Cargando…
Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer
Visual inspection of tumour tissues does not reveal the complex metabolic changes that differentiate cancer and its sub-types from healthy tissues. Mass spectrometry imaging, which quantifies the underlying chemistry, represents a powerful tool for the molecular exploration of tumour tissues. A 3-di...
Autores principales: | Inglese, Paolo, McKenzie, James S., Mroz, Anna, Kinross, James, Veselkov, Kirill, Holmes, Elaine, Takats, Zoltan, Nicholson, Jeremy K., Glen, Robert C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418631/ https://www.ncbi.nlm.nih.gov/pubmed/28507724 http://dx.doi.org/10.1039/c6sc03738k |
Ejemplares similares
-
Faster, More Reproducible DESI-MS for Biological Tissue Imaging
por: Tillner, Jocelyn, et al.
Publicado: (2017) -
Translational utility of a hierarchical classification strategy in biomolecular data analytics
por: Galea, Dieter, et al.
Publicado: (2017) -
Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry
por: Oetjen, Janina, et al.
Publicado: (2015) -
A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife
por: Alexander, James, et al.
Publicado: (2016) -
SPUTNIK: an R package for filtering of spatially related peaks in mass spectrometry imaging data
por: Inglese, Paolo, et al.
Publicado: (2019)