Cargando…

MAGERI: Computational pipeline for molecular-barcoded targeted resequencing

Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus de...

Descripción completa

Detalles Bibliográficos
Autores principales: Shugay, Mikhail, Zaretsky, Andrew R., Shagin, Dmitriy A., Shagina, Irina A., Volchenkov, Ivan A., Shelenkov, Andrew A., Lebedin, Mikhail Y., Bagaev, Dmitriy V., Lukyanov, Sergey, Chudakov, Dmitriy M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419444/
https://www.ncbi.nlm.nih.gov/pubmed/28475621
http://dx.doi.org/10.1371/journal.pcbi.1005480
Descripción
Sumario:Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.