Cargando…
Machine learning of accurate energy-conserving molecular force fields
Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) t...
Autores principales: | Chmiela, Stefan, Tkatchenko, Alexandre, Sauceda, Huziel E., Poltavsky, Igor, Schütt, Kristof T., Müller, Klaus-Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419702/ https://www.ncbi.nlm.nih.gov/pubmed/28508076 http://dx.doi.org/10.1126/sciadv.1603015 |
Ejemplares similares
-
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Chmiela, Stefan, et al.
Publicado: (2018) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
BIGDML—Towards accurate quantum machine learning force fields for materials
por: Sauceda, Huziel E., et al.
Publicado: (2022) -
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023)