Cargando…

Objective Video Quality Assessment Based on Machine Learning for Underwater Scientific Applications

Video services are meant to be a fundamental tool in the development of oceanic research. The current technology for underwater networks (UWNs) imposes strong constraints in the transmission capacity since only a severely limited bitrate is available. However, previous studies have shown that the qu...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno-Roldán, José-Miguel, Luque-Nieto, Miguel-Ángel, Poncela, Javier, Otero, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419777/
https://www.ncbi.nlm.nih.gov/pubmed/28333123
http://dx.doi.org/10.3390/s17040664
Descripción
Sumario:Video services are meant to be a fundamental tool in the development of oceanic research. The current technology for underwater networks (UWNs) imposes strong constraints in the transmission capacity since only a severely limited bitrate is available. However, previous studies have shown that the quality of experience (QoE) is enough for ocean scientists to consider the service useful, although the perceived quality can change significantly for small ranges of variation of video parameters. In this context, objective video quality assessment (VQA) methods become essential in network planning and real time quality adaptation fields. This paper presents two specialized models for objective VQA, designed to match the special requirements of UWNs. The models are built upon machine learning techniques and trained with actual user data gathered from subjective tests. Our performance analysis shows how both of them can successfully estimate quality as a mean opinion score (MOS) value and, for the second model, even compute a distribution function for user scores.