Cargando…
Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China)
The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatmen...
Autores principales: | Liu, Xiaojun, Ferguson, Richard B., Zheng, Hengbiao, Cao, Qiang, Tian, Yongchao, Cao, Weixing, Zhu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419785/ https://www.ncbi.nlm.nih.gov/pubmed/28338637 http://dx.doi.org/10.3390/s17040672 |
Ejemplares similares
-
Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.
por: Sharma, Lakesh K., et al.
Publicado: (2015) -
Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice
por: Liu, Xiaojun, et al.
Publicado: (2017) -
Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat
por: Zhang, Jiayi, et al.
Publicado: (2019) -
Optimal Leaf Positions for SPAD Meter Measurement in Rice
por: Yuan, Zhaofeng, et al.
Publicado: (2016) -
Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice
por: Zheng, Hengbiao, et al.
Publicado: (2018)