Cargando…
BCC-NER: bidirectional, contextual clues named entity tagger for gene/protein mention recognition
Tagging biomedical entities such as gene, protein, cell, and cell-line is the first step and an important pre-requisite in biomedical literature mining. In this paper, we describe our hybrid named entity tagging approach namely BCC-NER (bidirectional, contextual clues named entity tagger for gene/pr...
Autores principales: | Murugesan, Gurusamy, Abdulkadhar, Sabenabanu, Bhasuran, Balu, Natarajan, Jeyakumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419958/ https://www.ncbi.nlm.nih.gov/pubmed/28477208 http://dx.doi.org/10.1186/s13637-017-0060-6 |
Ejemplares similares
-
Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature
por: Murugesan, Gurusamy, et al.
Publicado: (2017) -
Automatic extraction of gene-disease associations from literature using joint ensemble learning
por: Bhasuran, Balu, et al.
Publicado: (2018) -
CheNER: chemical named entity recognizer
por: Usié, Anabel, et al.
Publicado: (2014) -
DroNER: Dataset for drone named entity recognition
por: Silalahi, Swardiantara, et al.
Publicado: (2023) -
SciNER: Extracting Named Entities from Scientific Literature
por: Hong, Zhi, et al.
Publicado: (2020)