Cargando…

Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean

In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text] , where [Formula: see text] , [Formula: see text] and [Fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Qing, Zhao, Tiehong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420009/
https://www.ncbi.nlm.nih.gov/pubmed/28539752
http://dx.doi.org/10.1186/s13660-017-1365-4
Descripción
Sumario:In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text] , where [Formula: see text] , [Formula: see text] and [Formula: see text] are the arithmetic-geometric, Toader and generalized logarithmic means of two positive numbers a and b, respectively.