Cargando…
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text] , where [Formula: see text] , [Formula: see text] and [Fo...
Autores principales: | Ding, Qing, Zhao, Tiehong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420009/ https://www.ncbi.nlm.nih.gov/pubmed/28539752 http://dx.doi.org/10.1186/s13660-017-1365-4 |
Ejemplares similares
-
Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
por: Zhao, Tie-Hong, et al.
Publicado: (2017) -
Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
por: Jiang, Wei-Dong
Publicado: (2013) -
Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
por: Yang, Yue-Ying, et al.
Publicado: (2017) -
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
por: Qian, Wei-Mao, et al.
Publicado: (2017) -
Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means
por: Chen, Jing-Jing, et al.
Publicado: (2017)