Cargando…
Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation
Persistent hyperglycemia, impairment of redox status and establishment of inflammatory pathophysiology integrally play important role in the pathogenesis of diabetic cardiomyopathy (DC). Present study examined the therapeutic potential of protocatechuic acid isolated from the Sansevieria roxburghian...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420572/ https://www.ncbi.nlm.nih.gov/pubmed/28533752 http://dx.doi.org/10.3389/fphar.2017.00251 |
_version_ | 1783234414005714944 |
---|---|
author | Bhattacharjee, Niloy Dua, Tarun K. Khanra, Ritu Joardar, Swarnalata Nandy, Ashis Saha, Achintya De Feo, Vincenzo Dewanjee, Saikat |
author_facet | Bhattacharjee, Niloy Dua, Tarun K. Khanra, Ritu Joardar, Swarnalata Nandy, Ashis Saha, Achintya De Feo, Vincenzo Dewanjee, Saikat |
author_sort | Bhattacharjee, Niloy |
collection | PubMed |
description | Persistent hyperglycemia, impairment of redox status and establishment of inflammatory pathophysiology integrally play important role in the pathogenesis of diabetic cardiomyopathy (DC). Present study examined the therapeutic potential of protocatechuic acid isolated from the Sansevieria roxburghiana rhizomes against DC employing rodent model of type 2 diabetes (T2D). T2D was induced by high fat diet + a low-single dose of streptozotocin (35 mg/kg, i.p.). T2D rats exhibited significantly (p < 0.01) high fasting blood glucose level. Alteration in serum lipid profile (p < 0.01) and increased levels of lactate dehydrogenase (p < 0.01) and creatine kinase (p < 0.01) in the sera of T2D rats revealed the occurrence of hyperlipidemia and diabetic pathophysiology. A significantly (p < 0.01) high levels of serum C-reactive protein and pro-inflammatory mediators revealed the establishment of inflammatory occurrence in T2D rats. Besides, significantly high levels of troponins in the sera revealed the establishment of cardiac dysfunctions in T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o.) treatment could significantly reverse the changes in serum biochemical parameters related to cardiac dysfunctions. Molecular mechanism studies demonstrated impairment of signaling cascade, IRS1/PI3K/Akt/AMPK/p 38/GLUT4, in glucose metabolism in the skeletal muscle of T2D rats. Significant (p < 0.01) activation of polyol pathway, enhanced production of AGEs, oxidative stress and up-regulation of inflammatory signaling cascades (PKC/NF-κB/PARP) were observed in the myocardial tissue of T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o.) treatment could significantly (p < 0.05–0.01) stimulate glucose metabolism in skeletal muscle, regulated glycemic and lipid status, reduced the secretion of pro-inflammatory cytokines, and restored the myocardial physiology in T2D rats near to normalcy. Histological assessments were also in agreement with the above findings. In silico molecular docking study again supported the interactions of protocatechuic acid with different signaling molecules, PI3K, IRS, Akt, AMPK PKC, NF-κB and PARP, involved in glucose utilization and inflammatory pathophysiology. In silico ADME study predicted that protocatechuic acid would support the drug-likeness character. Combining all, results would suggest a possibility of protocatechuic acid to be a new therapeutic agent for DC in future. |
format | Online Article Text |
id | pubmed-5420572 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54205722017-05-22 Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation Bhattacharjee, Niloy Dua, Tarun K. Khanra, Ritu Joardar, Swarnalata Nandy, Ashis Saha, Achintya De Feo, Vincenzo Dewanjee, Saikat Front Pharmacol Pharmacology Persistent hyperglycemia, impairment of redox status and establishment of inflammatory pathophysiology integrally play important role in the pathogenesis of diabetic cardiomyopathy (DC). Present study examined the therapeutic potential of protocatechuic acid isolated from the Sansevieria roxburghiana rhizomes against DC employing rodent model of type 2 diabetes (T2D). T2D was induced by high fat diet + a low-single dose of streptozotocin (35 mg/kg, i.p.). T2D rats exhibited significantly (p < 0.01) high fasting blood glucose level. Alteration in serum lipid profile (p < 0.01) and increased levels of lactate dehydrogenase (p < 0.01) and creatine kinase (p < 0.01) in the sera of T2D rats revealed the occurrence of hyperlipidemia and diabetic pathophysiology. A significantly (p < 0.01) high levels of serum C-reactive protein and pro-inflammatory mediators revealed the establishment of inflammatory occurrence in T2D rats. Besides, significantly high levels of troponins in the sera revealed the establishment of cardiac dysfunctions in T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o.) treatment could significantly reverse the changes in serum biochemical parameters related to cardiac dysfunctions. Molecular mechanism studies demonstrated impairment of signaling cascade, IRS1/PI3K/Akt/AMPK/p 38/GLUT4, in glucose metabolism in the skeletal muscle of T2D rats. Significant (p < 0.01) activation of polyol pathway, enhanced production of AGEs, oxidative stress and up-regulation of inflammatory signaling cascades (PKC/NF-κB/PARP) were observed in the myocardial tissue of T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o.) treatment could significantly (p < 0.05–0.01) stimulate glucose metabolism in skeletal muscle, regulated glycemic and lipid status, reduced the secretion of pro-inflammatory cytokines, and restored the myocardial physiology in T2D rats near to normalcy. Histological assessments were also in agreement with the above findings. In silico molecular docking study again supported the interactions of protocatechuic acid with different signaling molecules, PI3K, IRS, Akt, AMPK PKC, NF-κB and PARP, involved in glucose utilization and inflammatory pathophysiology. In silico ADME study predicted that protocatechuic acid would support the drug-likeness character. Combining all, results would suggest a possibility of protocatechuic acid to be a new therapeutic agent for DC in future. Frontiers Media S.A. 2017-05-08 /pmc/articles/PMC5420572/ /pubmed/28533752 http://dx.doi.org/10.3389/fphar.2017.00251 Text en Copyright © 2017 Bhattacharjee, Dua, Khanra, Joardar, Nandy, Saha, De Feo and Dewanjee. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Bhattacharjee, Niloy Dua, Tarun K. Khanra, Ritu Joardar, Swarnalata Nandy, Ashis Saha, Achintya De Feo, Vincenzo Dewanjee, Saikat Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation |
title | Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation |
title_full | Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation |
title_fullStr | Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation |
title_full_unstemmed | Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation |
title_short | Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation |
title_sort | protocatechuic acid, a phenolic from sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420572/ https://www.ncbi.nlm.nih.gov/pubmed/28533752 http://dx.doi.org/10.3389/fphar.2017.00251 |
work_keys_str_mv | AT bhattacharjeeniloy protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT duatarunk protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT khanraritu protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT joardarswarnalata protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT nandyashis protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT sahaachintya protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT defeovincenzo protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation AT dewanjeesaikat protocatechuicacidaphenolicfromsansevieriaroxburghianaleavessuppressesdiabeticcardiomyopathyviastimulatingglucosemetabolismamelioratingoxidativestressandinhibitinginflammation |