Cargando…
A KASP Genotyping Method to Identify Northern Watermilfoil, Eurasian Watermilfoil, and Their Interspecific Hybrids
The invasive aquatic plant Eurasian watermilfoil (Myriophyllum spicatum L.) can hybridize with the related North American native species northern watermilfoil (M. sibiricum Kom.). Hybrid watermilfoil (M. spicatum × M. sibiricum) populations have higher fitness and reduced sensitivity to some commonl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421195/ https://www.ncbi.nlm.nih.gov/pubmed/28533795 http://dx.doi.org/10.3389/fpls.2017.00752 |
Sumario: | The invasive aquatic plant Eurasian watermilfoil (Myriophyllum spicatum L.) can hybridize with the related North American native species northern watermilfoil (M. sibiricum Kom.). Hybrid watermilfoil (M. spicatum × M. sibiricum) populations have higher fitness and reduced sensitivity to some commonly used aquatic herbicides, making management more difficult. There is growing concern that management practices using herbicides in lakes with mixed populations of watermilfoil species may further select for hybrid individuals due to the difference in herbicide sensitivity. Accurate and cost-effective identification of rare hybrid individuals within populations is therefore critical for herbicide management decisions. Here we describe KASP assays for three SNPs in the ITS region to genotype individuals from both parental watermilfoil species and their hybrid, using synthesized plasmids containing the respective sequences as positive controls. Using KASP we genotyped 16 individuals from one lake and 23 individuals from a second lake, giving a highly accurate picture of Myriophyllum species distribution dynamics. We identified one hybrid individual among 16 samples from one lake, a discovery rate of <10%. Discriminant analysis showed that while a single SNP was generally sufficient for genotyping an individual, using multiple SNPs increased the reliability of genotyping. In the future, the ability to genotype many samples will provide the ability to identify the presence of rare individuals, such as a less common parental species or the inter-specific hybrid. Lakes with complex species distribution dynamics, such as a low proportion of hybrids, are where herbicide application must be carefully chosen so as not to select for the more vigorous and less herbicide-sensitive hybrid individuals. |
---|