Cargando…
Object Tracking Using Local Multiple Features and a Posterior Probability Measure
Object tracking has remained a challenging problem in recent years. Most of the trackers can not work well, especially when dealing with problems such as similarly colored backgrounds, object occlusions, low illumination, or sudden illumination changes in real scenes. A centroid iteration algorithm...
Autores principales: | Guo, Wenhua, Feng, Zuren, Ren, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421699/ https://www.ncbi.nlm.nih.gov/pubmed/28362345 http://dx.doi.org/10.3390/s17040739 |
Ejemplares similares
-
SAFS: Object Tracking Algorithm Based on Self-Adaptive Feature Selection
por: Guo, Wenhua, et al.
Publicado: (2021) -
An Improved Randomized Local Binary Features for Keypoints Recognition
por: Zhang, Jinming, et al.
Publicado: (2018) -
How Do Humans Perform in Multiple Object Tracking With Unstable Features
por: Zhao, Chen, et al.
Publicado: (2020) -
MLIP: using multiple processors to compute the posterior probability of linkage
por: Govil, Manika, et al.
Publicado: (2008) -
Multiple object localization and tracking based on boosted efficient binary local image descriptor
por: Sharma, Deependra, et al.
Publicado: (2023)