Cargando…
Implications for a Wireless, External Device System to Study Electrocorticography
Implantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to t...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421721/ https://www.ncbi.nlm.nih.gov/pubmed/28375161 http://dx.doi.org/10.3390/s17040761 |
_version_ | 1783234631987888128 |
---|---|
author | Rotermund, David Pistor, Jonas Hoeffmann, Janpeter Schellenberg, Tim Boll, Dmitriy Tolstosheeva, Elena Gauck, Dieter Stemmann, Heiko Peters-Drolshagen, Dagmar Kreiter, Andreas Kurt Schneider, Martin Paul, Steffen Lang, Walter Pawelzik, Klaus Richard |
author_facet | Rotermund, David Pistor, Jonas Hoeffmann, Janpeter Schellenberg, Tim Boll, Dmitriy Tolstosheeva, Elena Gauck, Dieter Stemmann, Heiko Peters-Drolshagen, Dagmar Kreiter, Andreas Kurt Schneider, Martin Paul, Steffen Lang, Walter Pawelzik, Klaus Richard |
author_sort | Rotermund, David |
collection | PubMed |
description | Implantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to the risk of infections and other long-term problems, means for wirelessly transmitting data and energy are a necessity which adds to the requirements. In recent literature, many high-tech components for such implants are presented with remarkable properties. However, these components are typically not freely available for such a system. Every group needs to re-develop their own solution. This raises the question if it is possible to create a reusable design for an implant and its external base-station, such that it allows other groups to use it as a starting point. In this article, we try to answer this question by presenting a design based exclusively on commercial off-the-shelf components and studying the properties of the resulting system. Following this idea, we present a fully wireless neuronal implant for simultaneously measuring electrocorticography signals at 128 locations from the surface of the brain. All design files are available as open source. |
format | Online Article Text |
id | pubmed-5421721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54217212017-05-12 Implications for a Wireless, External Device System to Study Electrocorticography Rotermund, David Pistor, Jonas Hoeffmann, Janpeter Schellenberg, Tim Boll, Dmitriy Tolstosheeva, Elena Gauck, Dieter Stemmann, Heiko Peters-Drolshagen, Dagmar Kreiter, Andreas Kurt Schneider, Martin Paul, Steffen Lang, Walter Pawelzik, Klaus Richard Sensors (Basel) Article Implantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to the risk of infections and other long-term problems, means for wirelessly transmitting data and energy are a necessity which adds to the requirements. In recent literature, many high-tech components for such implants are presented with remarkable properties. However, these components are typically not freely available for such a system. Every group needs to re-develop their own solution. This raises the question if it is possible to create a reusable design for an implant and its external base-station, such that it allows other groups to use it as a starting point. In this article, we try to answer this question by presenting a design based exclusively on commercial off-the-shelf components and studying the properties of the resulting system. Following this idea, we present a fully wireless neuronal implant for simultaneously measuring electrocorticography signals at 128 locations from the surface of the brain. All design files are available as open source. MDPI 2017-04-04 /pmc/articles/PMC5421721/ /pubmed/28375161 http://dx.doi.org/10.3390/s17040761 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rotermund, David Pistor, Jonas Hoeffmann, Janpeter Schellenberg, Tim Boll, Dmitriy Tolstosheeva, Elena Gauck, Dieter Stemmann, Heiko Peters-Drolshagen, Dagmar Kreiter, Andreas Kurt Schneider, Martin Paul, Steffen Lang, Walter Pawelzik, Klaus Richard Implications for a Wireless, External Device System to Study Electrocorticography |
title | Implications for a Wireless, External Device System to Study Electrocorticography |
title_full | Implications for a Wireless, External Device System to Study Electrocorticography |
title_fullStr | Implications for a Wireless, External Device System to Study Electrocorticography |
title_full_unstemmed | Implications for a Wireless, External Device System to Study Electrocorticography |
title_short | Implications for a Wireless, External Device System to Study Electrocorticography |
title_sort | implications for a wireless, external device system to study electrocorticography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421721/ https://www.ncbi.nlm.nih.gov/pubmed/28375161 http://dx.doi.org/10.3390/s17040761 |
work_keys_str_mv | AT rotermunddavid implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT pistorjonas implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT hoeffmannjanpeter implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT schellenbergtim implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT bolldmitriy implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT tolstosheevaelena implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT gauckdieter implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT stemmannheiko implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT petersdrolshagendagmar implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT kreiterandreaskurt implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT schneidermartin implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT paulsteffen implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT langwalter implicationsforawirelessexternaldevicesystemtostudyelectrocorticography AT pawelzikklausrichard implicationsforawirelessexternaldevicesystemtostudyelectrocorticography |