Cargando…
Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations
Emerging data from global markets outside the United States, where many generic iron sucrose formulations are available, have revealed that non‐US generic intravenous (i.v.) iron formulations may have iron release profiles that differ from the reference listed drug (RLD). The first generic i.v. iron...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421824/ https://www.ncbi.nlm.nih.gov/pubmed/28160427 http://dx.doi.org/10.1111/cts.12443 |
_version_ | 1783234656869548032 |
---|---|
author | Pai, AB Meyer, DE Bales, BC Cotero, VE Pai, MP Zheng, N Jiang, W |
author_facet | Pai, AB Meyer, DE Bales, BC Cotero, VE Pai, MP Zheng, N Jiang, W |
author_sort | Pai, AB |
collection | PubMed |
description | Emerging data from global markets outside the United States, where many generic iron sucrose formulations are available, have revealed that non‐US generic intravenous (i.v.) iron formulations may have iron release profiles that differ from the reference listed drug (RLD). The first generic i.v. iron approved in the United States was sodium ferric gluconate complex in 2011. We evaluated chelatable and redox labile iron assay methods to measure the amount of labile iron released from i.v. iron formulations in biorelevant matrices in vitro. The majority of published labile iron assays evaluated were not suitable for use in vitro due to overwhelming interference by the presence of the i.v. iron products. However, an optimized high‐performance liquid chromatography (HPLC)‐based method performed well for use in vitro labile iron detection in a biorelevant matrix. Application of this method may enhance bioequivalence evaluation of generic i.v. iron formulations in the future. |
format | Online Article Text |
id | pubmed-5421824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54218242017-05-23 Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations Pai, AB Meyer, DE Bales, BC Cotero, VE Pai, MP Zheng, N Jiang, W Clin Transl Sci Research Emerging data from global markets outside the United States, where many generic iron sucrose formulations are available, have revealed that non‐US generic intravenous (i.v.) iron formulations may have iron release profiles that differ from the reference listed drug (RLD). The first generic i.v. iron approved in the United States was sodium ferric gluconate complex in 2011. We evaluated chelatable and redox labile iron assay methods to measure the amount of labile iron released from i.v. iron formulations in biorelevant matrices in vitro. The majority of published labile iron assays evaluated were not suitable for use in vitro due to overwhelming interference by the presence of the i.v. iron products. However, an optimized high‐performance liquid chromatography (HPLC)‐based method performed well for use in vitro labile iron detection in a biorelevant matrix. Application of this method may enhance bioequivalence evaluation of generic i.v. iron formulations in the future. John Wiley and Sons Inc. 2017-02-03 2017-05 /pmc/articles/PMC5421824/ /pubmed/28160427 http://dx.doi.org/10.1111/cts.12443 Text en © 2017 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Pai, AB Meyer, DE Bales, BC Cotero, VE Pai, MP Zheng, N Jiang, W Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations |
title | Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations |
title_full | Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations |
title_fullStr | Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations |
title_full_unstemmed | Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations |
title_short | Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations |
title_sort | performance of redox active and chelatable iron assays to determine labile iron release from intravenous iron formulations |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421824/ https://www.ncbi.nlm.nih.gov/pubmed/28160427 http://dx.doi.org/10.1111/cts.12443 |
work_keys_str_mv | AT paiab performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations AT meyerde performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations AT balesbc performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations AT coterove performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations AT paimp performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations AT zhengn performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations AT jiangw performanceofredoxactiveandchelatableironassaystodeterminelabileironreleasefromintravenousironformulations |