Cargando…
Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dim...
Autores principales: | Ma, Xiaolei, Dai, Zhuang, He, Zhengbing, Ma, Jihui, Wang, Yong, Wang, Yunpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422179/ https://www.ncbi.nlm.nih.gov/pubmed/28394270 http://dx.doi.org/10.3390/s17040818 |
Ejemplares similares
-
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
por: Yu, Haiyang, et al.
Publicado: (2017) -
Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory
por: Ma, Xiaolei, et al.
Publicado: (2015) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network
por: Sun, Shangyu, et al.
Publicado: (2020) -
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks
por: Zhang, Sen, et al.
Publicado: (2019)