Cargando…

A Robust Diffusion Estimation Algorithm with Self-Adjusting Step-Size in WSNs

In wireless sensor networks (WSNs), each sensor node can estimate the global parameter from the local data in a distributed manner. This paper proposed a robust diffusion estimation algorithm based on a minimum error entropy criterion with a self-adjusting step-size, which are referred to as the dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Xiaodan, Chen, Feng, Ye, Qing, Duan, Shukai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422185/
https://www.ncbi.nlm.nih.gov/pubmed/28394308
http://dx.doi.org/10.3390/s17040824
Descripción
Sumario:In wireless sensor networks (WSNs), each sensor node can estimate the global parameter from the local data in a distributed manner. This paper proposed a robust diffusion estimation algorithm based on a minimum error entropy criterion with a self-adjusting step-size, which are referred to as the diffusion MEE-SAS (DMEE-SAS) algorithm. The DMEE-SAS algorithm has a fast speed of convergence and is robust against non-Gaussian noise in the measurements. The detailed performance analysis of the DMEE-SAS algorithm is performed. By combining the DMEE-SAS algorithm with the diffusion minimum error entropy (DMEE) algorithm, an Improving DMEE-SAS algorithm is proposed for a non-stationary environment where tracking is very important. The Improving DMEE-SAS algorithm can avoid insensitivity of the DMEE-SAS algorithm due to the small effective step-size near the optimal estimator and obtain a fast convergence speed. Numerical simulations are given to verify the effectiveness and advantages of these proposed algorithms.