Cargando…

Chronic Social Stress Time-Dependently Affects Neuropathic Pain-Related Cold Allodynia and Leads to Altered Expression of Spinal Biochemical Mediators

Clinical data have shown that chronic exposure to stress may be accompanied by an enhancement of inflammation-related pain sensitivity. In this context, little is however known on the impact of stress on neuropathic pain. In the present study we addressed this issue by combining the chronic constric...

Descripción completa

Detalles Bibliográficos
Autores principales: Le Coz, Glenn-Marie, Genty, Julien, Anton, Fernand, Hanesch, Ulrike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422477/
https://www.ncbi.nlm.nih.gov/pubmed/28536509
http://dx.doi.org/10.3389/fnbeh.2017.00070
Descripción
Sumario:Clinical data have shown that chronic exposure to stress may be accompanied by an enhancement of inflammation-related pain sensitivity. In this context, little is however known on the impact of stress on neuropathic pain. In the present study we addressed this issue by combining the chronic constriction injury (CCI) model with an ongoing social stress (OSS) paradigm. Cold plate and von Frey tests were performed in 48 rats divided into four groups: OSS exposed to OSS, CCI subjected to chronic nerve constriction, OSS+CCI with a combination of neuropathy and stress and CON, a control group lacking any manipulation. While we did not observe any stress-related differences in mechanical sensitivity throughout the observation period, CCI rats were more sensitive to cold stimulation than OSS+CCI in the initial phase of neuropathy. A switch was observed at a later stage, leading to a hypersensitivity of the OSS+CCI compared to the CCI rats. At this time point we investigated the spinal mRNA expression of neuron and glia related molecules potentially involved in neuropathic pain and stress. The combination of psychosocial stress and neuropathic pain seemed to enhance glial cell activation, pro-inflammatory cytokine and neurotrophic factor mRNA levels, rather than glutamatergic transmission. Our data show that long lasting social stress may lead to time-dependent alteration of neuropathy-related cold pain sensitivity while mechanically-induced pain remains unchanged.