Cargando…
The molecular mechanisms underlying the ERα-36-mediated signaling in breast cancer
Alterations in estrogen-mediated cellular signaling have largely been implicated in the pathogenesis of breast cancer. Here, we investigated the signaling regulation of a splice variant of the estrogen receptor, namely estrogen receptor (ERα-36), associated with a poor prognosis in breast cancers. C...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422711/ https://www.ncbi.nlm.nih.gov/pubmed/27941878 http://dx.doi.org/10.1038/onc.2016.415 |
Sumario: | Alterations in estrogen-mediated cellular signaling have largely been implicated in the pathogenesis of breast cancer. Here, we investigated the signaling regulation of a splice variant of the estrogen receptor, namely estrogen receptor (ERα-36), associated with a poor prognosis in breast cancers. Coupling in vitro and in vivo approaches we determined the precise sequential molecular events of a new estrogen signaling network in an ERα-negative cell line and in an original patient-derived xenograft. After estrogen treatment, ERα-36 rapidly associates with Src at the level of the plasma membrane, initiating downstream cascades, including MEK1/ERK activation and paxillin phosphorylation on S126, which in turn triggers a higher expression of cyclin D1. Of note, the direct binding of ERα-36 to ERK2 prevents its dephosphorylation by MKP3 and enhances the downstream signaling. These findings improve our understanding of the regulation of non-genomic estrogen signaling and open new avenues for personalized therapeutic approaches targeting Src or MEK in ERα-36-positive patients. |
---|