Cargando…
A time series driven decomposed evolutionary optimization approach for reconstructing large-scale gene regulatory networks based on fuzzy cognitive maps
BACKGROUND: Reconstructing gene regulatory networks (GRNs) from expression data plays an important role in understanding the fundamental cellular processes and revealing the underlying relations among genes. Although many algorithms have been proposed to reconstruct GRNs, more rapid and efficient me...
Autores principales: | Liu, Jing, Chi, Yaxiong, Zhu, Chen, Jin, Yaochu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423002/ https://www.ncbi.nlm.nih.gov/pubmed/28482795 http://dx.doi.org/10.1186/s12859-017-1657-1 |
Ejemplares similares
-
Fuzzy evolutionary computation
por: Pedrycz, Witold
Publicado: (1997) -
Entropy-Based Fuzzy TOPSIS Method for Investment Decision Optimization of Large-Scale Projects
por: Cao, Junli, et al.
Publicado: (2022) -
Modeling time series by aggregating multiple fuzzy cognitive maps
por: Yu, Tianming, et al.
Publicado: (2021) -
GAPSO-Optimized Fuzzy PID Controller for Electric-Driven Seeding
por: Wang, Song, et al.
Publicado: (2022) -
Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19
por: Kumar, Naresh, et al.
Publicado: (2021)