Cargando…
The redistributive effects of copayment in outpatient prescriptions: evidence from Lombardy
BACKGROUND: In Italy, copayment has changed its nature and it can no longer be simply considered a system to curb inappropriate expenditure. It has become an important form of revenue for public health care provision, but it might also become a source of distortions in income and health benefits red...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423013/ https://www.ncbi.nlm.nih.gov/pubmed/28482834 http://dx.doi.org/10.1186/s12913-017-2248-6 |
Sumario: | BACKGROUND: In Italy, copayment has changed its nature and it can no longer be simply considered a system to curb inappropriate expenditure. It has become an important form of revenue for public health care provision, but it might also become a source of distortions in income and health benefits redistribution. METHODS: We use a rich administrative dataset gathering information on patients demand (whose records have been matched to income declared for tax purposes) to study the effects of an additional copayment (the so called “superticket” introduced by the Italian government in 2012) in Lombardy, the biggest Italian Region whose socio-economic dimension is comparable to that of many European countries (e.g., the Netherlands, Switzerland, etc.). RESULTS: Our analysis shows that at the aggregate level the non-uniform superticket schedule adopted in Lombardy is slightly pro-poor, but this result coexists with evidences pointing towards possible cases of restriction to access caused by the additional copayment. CONCLUSIONS: The introduction of the superticket and the ensuing increase in the out-of pocket payment for health care raises questions about the distribution of the burden among patients, and the sustainability of the extra revenue through time. This issue needs to be further investigated by combining health status data with the information in this dataset. |
---|