Cargando…
Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter
While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423271/ https://www.ncbi.nlm.nih.gov/pubmed/28536501 http://dx.doi.org/10.3389/fnins.2017.00258 |
_version_ | 1783234912268058624 |
---|---|
author | Viviani, Roberto Pracht, Eberhard D. Brenner, Daniel Beschoner, Petra Stingl, Julia C. Stöcker, Tony |
author_facet | Viviani, Roberto Pracht, Eberhard D. Brenner, Daniel Beschoner, Petra Stingl, Julia C. Stöcker, Tony |
author_sort | Viviani, Roberto |
collection | PubMed |
description | While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By considering multiple signal sources at once, multimodal segmentation approaches may be able to resolve these different tissue classes and address this potential confound. We explored here the simultaneous use of FLAIR and apparent transverse relaxation rates (a signal related to [Formula: see text] relaxation maps and having similar contrast) with T1-weighted images. Relative to T1-weighted images alone, multimodal segmentation had marked positive effects on 1. the separation of gray matter from dura, 2. the exclusion of vessels from the gray matter compartment, and 3. the contrast with extracerebral connective tissue. While obtainable together with the T1-weighted images without increasing scanning times, apparent transverse relaxation rates were less effective than added FLAIR images in providing the above mentioned advantages. FLAIR images also improved the detection of cortical matter in areas prone to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition of transverse relaxation maps exacerbated the effect of these artifacts on segmentation. Our results confirm that standard MPRAGE segmentation may overestimate gray matter volume by wrongly assigning vessels and dura to this compartment and show that multimodal approaches may greatly improve the specificity of cortical segmentation. Since multimodal segmentation is easily implemented, these benefits are immediately available to studies focusing on translational applications of structural imaging. |
format | Online Article Text |
id | pubmed-5423271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54232712017-05-23 Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter Viviani, Roberto Pracht, Eberhard D. Brenner, Daniel Beschoner, Petra Stingl, Julia C. Stöcker, Tony Front Neurosci Neuroscience While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By considering multiple signal sources at once, multimodal segmentation approaches may be able to resolve these different tissue classes and address this potential confound. We explored here the simultaneous use of FLAIR and apparent transverse relaxation rates (a signal related to [Formula: see text] relaxation maps and having similar contrast) with T1-weighted images. Relative to T1-weighted images alone, multimodal segmentation had marked positive effects on 1. the separation of gray matter from dura, 2. the exclusion of vessels from the gray matter compartment, and 3. the contrast with extracerebral connective tissue. While obtainable together with the T1-weighted images without increasing scanning times, apparent transverse relaxation rates were less effective than added FLAIR images in providing the above mentioned advantages. FLAIR images also improved the detection of cortical matter in areas prone to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition of transverse relaxation maps exacerbated the effect of these artifacts on segmentation. Our results confirm that standard MPRAGE segmentation may overestimate gray matter volume by wrongly assigning vessels and dura to this compartment and show that multimodal approaches may greatly improve the specificity of cortical segmentation. Since multimodal segmentation is easily implemented, these benefits are immediately available to studies focusing on translational applications of structural imaging. Frontiers Media S.A. 2017-05-09 /pmc/articles/PMC5423271/ /pubmed/28536501 http://dx.doi.org/10.3389/fnins.2017.00258 Text en Copyright © 2017 Viviani, Pracht, Brenner, Beschoner, Stingl and Stöcker. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Viviani, Roberto Pracht, Eberhard D. Brenner, Daniel Beschoner, Petra Stingl, Julia C. Stöcker, Tony Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter |
title | Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter |
title_full | Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter |
title_fullStr | Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter |
title_full_unstemmed | Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter |
title_short | Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter |
title_sort | multimodal memprage, flair, and [formula: see text] segmentation to resolve dura and vessels from cortical gray matter |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423271/ https://www.ncbi.nlm.nih.gov/pubmed/28536501 http://dx.doi.org/10.3389/fnins.2017.00258 |
work_keys_str_mv | AT vivianiroberto multimodalmemprageflairandformulaseetextsegmentationtoresolveduraandvesselsfromcorticalgraymatter AT prachteberhardd multimodalmemprageflairandformulaseetextsegmentationtoresolveduraandvesselsfromcorticalgraymatter AT brennerdaniel multimodalmemprageflairandformulaseetextsegmentationtoresolveduraandvesselsfromcorticalgraymatter AT beschonerpetra multimodalmemprageflairandformulaseetextsegmentationtoresolveduraandvesselsfromcorticalgraymatter AT stingljuliac multimodalmemprageflairandformulaseetextsegmentationtoresolveduraandvesselsfromcorticalgraymatter AT stockertony multimodalmemprageflairandformulaseetextsegmentationtoresolveduraandvesselsfromcorticalgraymatter |