Cargando…
MERS-CoV spike nanoparticles protect mice from MERS-CoV infection
The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423355/ https://www.ncbi.nlm.nih.gov/pubmed/28237499 http://dx.doi.org/10.1016/j.vaccine.2017.02.012 |
Sumario: | The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding and virion entry to cells, is immunodominant and induces neutralizing antibodies in vivo, all of which, make the S protein an ideal target for anti-MERS-CoV vaccines. In this study, we demonstrate protection induced by vaccination with a recombinant MERS-CoV S nanoparticle vaccine and Matrix-M1 adjuvant combination in mice. The MERS-CoV S nanoparticle vaccine produced high titer anti-S neutralizing antibody and protected mice from MERS-CoV infection in vivo. |
---|