Cargando…
A new S-type upper bound for the largest singular value of nonnegative rectangular tensors
By breaking [Formula: see text] into disjoint subsets S and its complement, a new S-type upper bound for the largest singular value of nonnegative rectangular tensors is given and proved to be better than some existing ones. Numerical examples are given to verify the theoretical results.
Autores principales: | Zhao, Jianxing, Sang, Caili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423925/ https://www.ncbi.nlm.nih.gov/pubmed/28553055 http://dx.doi.org/10.1186/s13660-017-1382-3 |
Ejemplares similares
-
An S-type singular value inclusion set for rectangular tensors
por: Sang, Caili
Publicado: (2017) -
A new bound for the spectral radius of nonnegative tensors
por: Li, Suhua, et al.
Publicado: (2017) -
Bounds for the Z-spectral radius of nonnegative tensors
por: He, Jun, et al.
Publicado: (2016) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Scenario Discovery Using Nonnegative Tensor Factorization
por: Bader, Brett W., et al.
Publicado: (2008)