Cargando…

A mathematical model for three-phase-lag dipolar thermoelastic bodies

In this study we approach a mixed initial-boundary value problem to modeling a three-phase-lag dipolar thermoelastic body. The constitutive laws in this context are given. We establish a uniqueness result and prove a reciprocal theorem. The variational principle obtained in this context is a general...

Descripción completa

Detalles Bibliográficos
Autores principales: Marin, M, Agarwal, RP, Codarcea, L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423927/
https://www.ncbi.nlm.nih.gov/pubmed/28553059
http://dx.doi.org/10.1186/s13660-017-1380-5
_version_ 1783235025011998720
author Marin, M
Agarwal, RP
Codarcea, L
author_facet Marin, M
Agarwal, RP
Codarcea, L
author_sort Marin, M
collection PubMed
description In this study we approach a mixed initial-boundary value problem to modeling a three-phase-lag dipolar thermoelastic body. The constitutive laws in this context are given. We establish a uniqueness result and prove a reciprocal theorem. The variational principle obtained in this context is a generalization of the known Gurtin’s principle for classical elasticity.
format Online
Article
Text
id pubmed-5423927
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-54239272017-05-25 A mathematical model for three-phase-lag dipolar thermoelastic bodies Marin, M Agarwal, RP Codarcea, L J Inequal Appl Research In this study we approach a mixed initial-boundary value problem to modeling a three-phase-lag dipolar thermoelastic body. The constitutive laws in this context are given. We establish a uniqueness result and prove a reciprocal theorem. The variational principle obtained in this context is a generalization of the known Gurtin’s principle for classical elasticity. Springer International Publishing 2017-05-10 2017 /pmc/articles/PMC5423927/ /pubmed/28553059 http://dx.doi.org/10.1186/s13660-017-1380-5 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Marin, M
Agarwal, RP
Codarcea, L
A mathematical model for three-phase-lag dipolar thermoelastic bodies
title A mathematical model for three-phase-lag dipolar thermoelastic bodies
title_full A mathematical model for three-phase-lag dipolar thermoelastic bodies
title_fullStr A mathematical model for three-phase-lag dipolar thermoelastic bodies
title_full_unstemmed A mathematical model for three-phase-lag dipolar thermoelastic bodies
title_short A mathematical model for three-phase-lag dipolar thermoelastic bodies
title_sort mathematical model for three-phase-lag dipolar thermoelastic bodies
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423927/
https://www.ncbi.nlm.nih.gov/pubmed/28553059
http://dx.doi.org/10.1186/s13660-017-1380-5
work_keys_str_mv AT marinm amathematicalmodelforthreephaselagdipolarthermoelasticbodies
AT agarwalrp amathematicalmodelforthreephaselagdipolarthermoelasticbodies
AT codarceal amathematicalmodelforthreephaselagdipolarthermoelasticbodies
AT marinm mathematicalmodelforthreephaselagdipolarthermoelasticbodies
AT agarwalrp mathematicalmodelforthreephaselagdipolarthermoelasticbodies
AT codarceal mathematicalmodelforthreephaselagdipolarthermoelasticbodies