Cargando…

Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Se Jin, Kim, Boseong, Ryu, Byeol, Kim, Eunji, Lee, Sunhee, Jang, Dae Sik, Ryu, Jong Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5424634/
https://www.ncbi.nlm.nih.gov/pubmed/27829270
http://dx.doi.org/10.4062/biomolther.2016.058
Descripción
Sumario:To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.