Cargando…

H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]

Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Weijuan, Wang, Hongxia, Wu, Yinliang, Yang, Nan, Yang, Jun, Zhang, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425394/
https://www.ncbi.nlm.nih.gov/pubmed/27864852
http://dx.doi.org/10.1111/pbi.12667
_version_ 1783235293201039360
author Fan, Weijuan
Wang, Hongxia
Wu, Yinliang
Yang, Nan
Yang, Jun
Zhang, Peng
author_facet Fan, Weijuan
Wang, Hongxia
Wu, Yinliang
Yang, Nan
Yang, Jun
Zhang, Peng
author_sort Fan, Weijuan
collection PubMed
description Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H(+)‐pyrophosphatase (H(+)‐PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H(+)‐ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1‐overexpressing plants showed better growth, including enlarged root systems, under Fe‐sufficient or Fe‐deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up‐regulation of Fe uptake genes, e.g. FRO2,IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β‐amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H(2)O(2) accumulation associated with up‐regulated ROS‐scavenging activity. Therefore, H(+)‐PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient‐deficient soils.
format Online
Article
Text
id pubmed-5425394
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-54253942017-06-01 H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.] Fan, Weijuan Wang, Hongxia Wu, Yinliang Yang, Nan Yang, Jun Zhang, Peng Plant Biotechnol J Research Articles Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H(+)‐pyrophosphatase (H(+)‐PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H(+)‐ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1‐overexpressing plants showed better growth, including enlarged root systems, under Fe‐sufficient or Fe‐deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up‐regulation of Fe uptake genes, e.g. FRO2,IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β‐amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H(2)O(2) accumulation associated with up‐regulated ROS‐scavenging activity. Therefore, H(+)‐PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient‐deficient soils. John Wiley and Sons Inc. 2017-02-10 2017-06 /pmc/articles/PMC5425394/ /pubmed/27864852 http://dx.doi.org/10.1111/pbi.12667 Text en © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Fan, Weijuan
Wang, Hongxia
Wu, Yinliang
Yang, Nan
Yang, Jun
Zhang, Peng
H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]
title H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]
title_full H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]
title_fullStr H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]
title_full_unstemmed H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]
title_short H(+)‐pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]
title_sort h(+)‐pyrophosphatase ibvp1 promotes efficient iron use in sweet potato [ipomoea batatas (l.) lam.]
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425394/
https://www.ncbi.nlm.nih.gov/pubmed/27864852
http://dx.doi.org/10.1111/pbi.12667
work_keys_str_mv AT fanweijuan hpyrophosphataseibvp1promotesefficientironuseinsweetpotatoipomoeabatatasllam
AT wanghongxia hpyrophosphataseibvp1promotesefficientironuseinsweetpotatoipomoeabatatasllam
AT wuyinliang hpyrophosphataseibvp1promotesefficientironuseinsweetpotatoipomoeabatatasllam
AT yangnan hpyrophosphataseibvp1promotesefficientironuseinsweetpotatoipomoeabatatasllam
AT yangjun hpyrophosphataseibvp1promotesefficientironuseinsweetpotatoipomoeabatatasllam
AT zhangpeng hpyrophosphataseibvp1promotesefficientironuseinsweetpotatoipomoeabatatasllam