Cargando…

Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants

The data presented in this article are related to the research article entitled “Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI” (Wu et al., 2017) [1]. Brain immaturity at birth poses critical neurological risks in the preter...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Dan, Chang, Linda, Akazawa, Kentaro, Oishi, Kumiko, Skranes, Jon, Ernst, Thomas, Oishi, Kenichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426014/
https://www.ncbi.nlm.nih.gov/pubmed/28516143
http://dx.doi.org/10.1016/j.dib.2017.04.020
Descripción
Sumario:The data presented in this article are related to the research article entitled “Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI” (Wu et al., 2017) [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB) that could affect postnatal development, based on diffusion tensor MRI (DTI) acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA) and mean diffusivities (MD) measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD) in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.