Cargando…
Vertical ground reaction force marker for Parkinson’s disease
Parkinson’s disease (PD) patients regularly exhibit abnormal gait patterns. Automated differentiation of abnormal gait from normal gait can serve as a potential tool for early diagnosis as well as monitoring the effect of PD treatment. The aim of current study is to differentiate PD patients from he...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426596/ https://www.ncbi.nlm.nih.gov/pubmed/28493868 http://dx.doi.org/10.1371/journal.pone.0175951 |
_version_ | 1783235504592912384 |
---|---|
author | Alam, Md Nafiul Garg, Amanmeet Munia, Tamanna Tabassum Khan Fazel-Rezai, Reza Tavakolian, Kouhyar |
author_facet | Alam, Md Nafiul Garg, Amanmeet Munia, Tamanna Tabassum Khan Fazel-Rezai, Reza Tavakolian, Kouhyar |
author_sort | Alam, Md Nafiul |
collection | PubMed |
description | Parkinson’s disease (PD) patients regularly exhibit abnormal gait patterns. Automated differentiation of abnormal gait from normal gait can serve as a potential tool for early diagnosis as well as monitoring the effect of PD treatment. The aim of current study is to differentiate PD patients from healthy controls, on the basis of features derived from plantar vertical ground reaction force (VGRF) data during walking at normal pace. The current work presents a comprehensive study highlighting the efficacy of different machine learning classifiers towards devising an accurate prediction system. Selection of meaningful feature based on sequential forward feature selection, the swing time, stride time variability, and center of pressure features facilitated successful classification of control and PD gaits. Support Vector Machine (SVM), K-nearest neighbor (KNN), random forest, and decision trees classifiers were used to build the prediction model. We found that SVM with cubic kernel outperformed other classifiers with an accuracy of 93.6%, the sensitivity of 93.1%, and specificity of 94.1%. In comparison to other studies, utilizing same dataset, our designed prediction system improved the classification performance by approximately 10%. The results of the current study underscore the ability of the VGRF data obtained non-invasively from wearable devices, in combination with a SVM classifier trained on meticulously selected features, as a tool for diagnosis of PD and monitoring effectiveness of therapy post pathology. |
format | Online Article Text |
id | pubmed-5426596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54265962017-05-25 Vertical ground reaction force marker for Parkinson’s disease Alam, Md Nafiul Garg, Amanmeet Munia, Tamanna Tabassum Khan Fazel-Rezai, Reza Tavakolian, Kouhyar PLoS One Research Article Parkinson’s disease (PD) patients regularly exhibit abnormal gait patterns. Automated differentiation of abnormal gait from normal gait can serve as a potential tool for early diagnosis as well as monitoring the effect of PD treatment. The aim of current study is to differentiate PD patients from healthy controls, on the basis of features derived from plantar vertical ground reaction force (VGRF) data during walking at normal pace. The current work presents a comprehensive study highlighting the efficacy of different machine learning classifiers towards devising an accurate prediction system. Selection of meaningful feature based on sequential forward feature selection, the swing time, stride time variability, and center of pressure features facilitated successful classification of control and PD gaits. Support Vector Machine (SVM), K-nearest neighbor (KNN), random forest, and decision trees classifiers were used to build the prediction model. We found that SVM with cubic kernel outperformed other classifiers with an accuracy of 93.6%, the sensitivity of 93.1%, and specificity of 94.1%. In comparison to other studies, utilizing same dataset, our designed prediction system improved the classification performance by approximately 10%. The results of the current study underscore the ability of the VGRF data obtained non-invasively from wearable devices, in combination with a SVM classifier trained on meticulously selected features, as a tool for diagnosis of PD and monitoring effectiveness of therapy post pathology. Public Library of Science 2017-05-11 /pmc/articles/PMC5426596/ /pubmed/28493868 http://dx.doi.org/10.1371/journal.pone.0175951 Text en © 2017 Alam et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Alam, Md Nafiul Garg, Amanmeet Munia, Tamanna Tabassum Khan Fazel-Rezai, Reza Tavakolian, Kouhyar Vertical ground reaction force marker for Parkinson’s disease |
title | Vertical ground reaction force marker for Parkinson’s disease |
title_full | Vertical ground reaction force marker for Parkinson’s disease |
title_fullStr | Vertical ground reaction force marker for Parkinson’s disease |
title_full_unstemmed | Vertical ground reaction force marker for Parkinson’s disease |
title_short | Vertical ground reaction force marker for Parkinson’s disease |
title_sort | vertical ground reaction force marker for parkinson’s disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426596/ https://www.ncbi.nlm.nih.gov/pubmed/28493868 http://dx.doi.org/10.1371/journal.pone.0175951 |
work_keys_str_mv | AT alammdnafiul verticalgroundreactionforcemarkerforparkinsonsdisease AT gargamanmeet verticalgroundreactionforcemarkerforparkinsonsdisease AT muniatamannatabassumkhan verticalgroundreactionforcemarkerforparkinsonsdisease AT fazelrezaireza verticalgroundreactionforcemarkerforparkinsonsdisease AT tavakoliankouhyar verticalgroundreactionforcemarkerforparkinsonsdisease |