Cargando…

A new two-stage method for revealing missing parts of edges in protein-protein interaction networks

With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have be...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei, Xu, Jia, Li, Yuanyuan, Zou, Xiufen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426645/
https://www.ncbi.nlm.nih.gov/pubmed/28493910
http://dx.doi.org/10.1371/journal.pone.0177029
Descripción
Sumario:With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.