Cargando…
Sleep spindle detection based on non-experts: A validation study
Accurate and efficient detection of sleep spindles is a methodological challenge. The present study describes a method of using non-experts for manual detection of sleep spindles. We recruited five experts and 168 non-experts to manually identify spindles in stage N2 and stage N3 sleep data using a...
Autores principales: | Zhao, Rui, Sun, Jinbo, Zhang, Xinxin, Wu, Huanju, Liu, Peng, Yang, Xuejuan, Qin, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426701/ https://www.ncbi.nlm.nih.gov/pubmed/28493938 http://dx.doi.org/10.1371/journal.pone.0177437 |
Ejemplares similares
-
Sleep spindle detection: crowdsourcing and evaluating performance of experts, non-experts, and automated methods
por: Warby, Simon C., et al.
Publicado: (2014) -
Prediction of the Effect of Sleep Deprivation on Response Inhibition via Machine Learning on Structural Magnetic Resonance Imaging Data
por: Zhao, Rui, et al.
Publicado: (2018) -
Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization
por: Ray, Laura B., et al.
Publicado: (2015) -
Sleep Stage Classification Using Time-Frequency Spectra From Consecutive Multi-Time Points
por: Xu, Ziliang, et al.
Publicado: (2020) -
Hierarchical fusion detection algorithm for sleep spindle detection
por: Chen, Chao, et al.
Publicado: (2023)