Cargando…
A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion
In real applications, how to measure the uncertain degree of sensor reports before applying sensor data fusion is a big challenge. In this paper, in the frame of Dempster–Shafer evidence theory, a weighted belief entropy based on Deng entropy is proposed to quantify the uncertainty of uncertain info...
Autores principales: | Tang, Yongchuan, Zhou, Deyun, Xu, Shuai, He, Zichang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426924/ https://www.ncbi.nlm.nih.gov/pubmed/28441736 http://dx.doi.org/10.3390/s17040928 |
Ejemplares similares
-
A Novel Belief Entropy for Measuring Uncertainty in Dempster-Shafer Evidence Theory Framework Based on Plausibility Transformation and Weighted Hartley Entropy
por: Pan, Qian, et al.
Publicado: (2019) -
Measuring the Uncertainty in the Original and Negation of Evidence Using Belief Entropy for Conflict Data Fusion
por: Chen, Yutong, et al.
Publicado: (2021) -
Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion
por: Tang, Yongchuan, et al.
Publicado: (2022) -
An Extension to Deng’s Entropy in the Open World Assumption with an Application in Sensor Data Fusion
por: Tang, Yongchuan, et al.
Publicado: (2018) -
A modified belief entropy in Dempster-Shafer framework
por: Zhou, Deyun, et al.
Publicado: (2017)