Cargando…

Using Wavelet Packet Transform for Surface Roughness Evaluation and Texture Extraction

Surface characterization plays a significant role in evaluating surface functional performance. In this paper, we introduce wavelet packet transform for surface roughness characterization and surface texture extraction. Surface topography is acquired by a confocal laser scanning microscope. Smooth b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiao, Shi, Tielin, Liao, Guanglan, Zhang, Yichun, Hong, Yuan, Chen, Kepeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426929/
https://www.ncbi.nlm.nih.gov/pubmed/28441749
http://dx.doi.org/10.3390/s17040933
Descripción
Sumario:Surface characterization plays a significant role in evaluating surface functional performance. In this paper, we introduce wavelet packet transform for surface roughness characterization and surface texture extraction. Surface topography is acquired by a confocal laser scanning microscope. Smooth border padding and de-noise process are implemented to generate a roughness surface precisely. By analyzing the high frequency components of a simulated profile, surface textures are separated by using wavelet packet transform, and the reconstructed roughness and waviness coincide well with the original ones. Wavelet packet transform is then used as a smooth filter for texture extraction. A roughness specimen and three real engineering surfaces are also analyzed in detail. Profile and areal roughness parameters are calculated to quantify the characterization results and compared with those measured by a profile meter. Most obtained roughness parameters agree well with the measurement results, and the largest deviation occurs in the skewness. The relations between the roughness parameters and noise are analyzed by simulation for explaining the relatively large deviations. The extracted textures reflect the surface structure and indicate the manufacturing conditions well, which is helpful for further feature recognition and matching. By using wavelet packet transform, engineering surfaces are comprehensively characterized including evaluating surface roughness and extracting surface texture.