Cargando…
A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), beca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427491/ https://www.ncbi.nlm.nih.gov/pubmed/28364037 http://dx.doi.org/10.1534/g3.117.039974 |
_version_ | 1783235636234289152 |
---|---|
author | Montesinos-López, Osval A. Montesinos-López, Abelardo Crossa, José Toledo, Fernando H. Montesinos-López, José C. Singh, Pawan Juliana, Philomin Salinas-Ruiz, Josafhat |
author_facet | Montesinos-López, Osval A. Montesinos-López, Abelardo Crossa, José Toledo, Fernando H. Montesinos-López, José C. Singh, Pawan Juliana, Philomin Salinas-Ruiz, Josafhat |
author_sort | Montesinos-López, Osval A. |
collection | PubMed |
description | When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), because there is a lack of comprehensive models that simultaneously take into account the correlated counting traits and G × E. For this reason, in this study we propose a multiple-trait and multiple-environment model for count data. The proposed model was developed under the Bayesian paradigm for which we developed a Markov Chain Monte Carlo (MCMC) with noninformative priors. This allows obtaining all required full conditional distributions of the parameters leading to an exact Gibbs sampler for the posterior distribution. Our model was tested with simulated data and a real data set. Results show that the proposed multi-trait, multi-environment model is an attractive alternative for modeling multiple count traits measured in multiple environments. |
format | Online Article Text |
id | pubmed-5427491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-54274912017-05-12 A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction Montesinos-López, Osval A. Montesinos-López, Abelardo Crossa, José Toledo, Fernando H. Montesinos-López, José C. Singh, Pawan Juliana, Philomin Salinas-Ruiz, Josafhat G3 (Bethesda) Investigations When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), because there is a lack of comprehensive models that simultaneously take into account the correlated counting traits and G × E. For this reason, in this study we propose a multiple-trait and multiple-environment model for count data. The proposed model was developed under the Bayesian paradigm for which we developed a Markov Chain Monte Carlo (MCMC) with noninformative priors. This allows obtaining all required full conditional distributions of the parameters leading to an exact Gibbs sampler for the posterior distribution. Our model was tested with simulated data and a real data set. Results show that the proposed multi-trait, multi-environment model is an attractive alternative for modeling multiple count traits measured in multiple environments. Genetics Society of America 2017-03-29 /pmc/articles/PMC5427491/ /pubmed/28364037 http://dx.doi.org/10.1534/g3.117.039974 Text en Copyright © 2017 Montesinos-López et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigations Montesinos-López, Osval A. Montesinos-López, Abelardo Crossa, José Toledo, Fernando H. Montesinos-López, José C. Singh, Pawan Juliana, Philomin Salinas-Ruiz, Josafhat A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction |
title | A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction |
title_full | A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction |
title_fullStr | A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction |
title_full_unstemmed | A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction |
title_short | A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction |
title_sort | bayesian poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427491/ https://www.ncbi.nlm.nih.gov/pubmed/28364037 http://dx.doi.org/10.1534/g3.117.039974 |
work_keys_str_mv | AT montesinoslopezosvala abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT montesinoslopezabelardo abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT crossajose abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT toledofernandoh abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT montesinoslopezjosec abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT singhpawan abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT julianaphilomin abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT salinasruizjosafhat abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT montesinoslopezosvala bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT montesinoslopezabelardo bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT crossajose bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT toledofernandoh bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT montesinoslopezjosec bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT singhpawan bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT julianaphilomin bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction AT salinasruizjosafhat bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction |