Cargando…

A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction

When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), beca...

Descripción completa

Detalles Bibliográficos
Autores principales: Montesinos-López, Osval A., Montesinos-López, Abelardo, Crossa, José, Toledo, Fernando H., Montesinos-López, José C., Singh, Pawan, Juliana, Philomin, Salinas-Ruiz, Josafhat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427491/
https://www.ncbi.nlm.nih.gov/pubmed/28364037
http://dx.doi.org/10.1534/g3.117.039974
_version_ 1783235636234289152
author Montesinos-López, Osval A.
Montesinos-López, Abelardo
Crossa, José
Toledo, Fernando H.
Montesinos-López, José C.
Singh, Pawan
Juliana, Philomin
Salinas-Ruiz, Josafhat
author_facet Montesinos-López, Osval A.
Montesinos-López, Abelardo
Crossa, José
Toledo, Fernando H.
Montesinos-López, José C.
Singh, Pawan
Juliana, Philomin
Salinas-Ruiz, Josafhat
author_sort Montesinos-López, Osval A.
collection PubMed
description When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), because there is a lack of comprehensive models that simultaneously take into account the correlated counting traits and G × E. For this reason, in this study we propose a multiple-trait and multiple-environment model for count data. The proposed model was developed under the Bayesian paradigm for which we developed a Markov Chain Monte Carlo (MCMC) with noninformative priors. This allows obtaining all required full conditional distributions of the parameters leading to an exact Gibbs sampler for the posterior distribution. Our model was tested with simulated data and a real data set. Results show that the proposed multi-trait, multi-environment model is an attractive alternative for modeling multiple count traits measured in multiple environments.
format Online
Article
Text
id pubmed-5427491
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-54274912017-05-12 A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction Montesinos-López, Osval A. Montesinos-López, Abelardo Crossa, José Toledo, Fernando H. Montesinos-López, José C. Singh, Pawan Juliana, Philomin Salinas-Ruiz, Josafhat G3 (Bethesda) Investigations When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait at a time taking into account genotype × environment interaction (G × E), because there is a lack of comprehensive models that simultaneously take into account the correlated counting traits and G × E. For this reason, in this study we propose a multiple-trait and multiple-environment model for count data. The proposed model was developed under the Bayesian paradigm for which we developed a Markov Chain Monte Carlo (MCMC) with noninformative priors. This allows obtaining all required full conditional distributions of the parameters leading to an exact Gibbs sampler for the posterior distribution. Our model was tested with simulated data and a real data set. Results show that the proposed multi-trait, multi-environment model is an attractive alternative for modeling multiple count traits measured in multiple environments. Genetics Society of America 2017-03-29 /pmc/articles/PMC5427491/ /pubmed/28364037 http://dx.doi.org/10.1534/g3.117.039974 Text en Copyright © 2017 Montesinos-López et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Montesinos-López, Osval A.
Montesinos-López, Abelardo
Crossa, José
Toledo, Fernando H.
Montesinos-López, José C.
Singh, Pawan
Juliana, Philomin
Salinas-Ruiz, Josafhat
A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
title A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
title_full A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
title_fullStr A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
title_full_unstemmed A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
title_short A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction
title_sort bayesian poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427491/
https://www.ncbi.nlm.nih.gov/pubmed/28364037
http://dx.doi.org/10.1534/g3.117.039974
work_keys_str_mv AT montesinoslopezosvala abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT montesinoslopezabelardo abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT crossajose abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT toledofernandoh abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT montesinoslopezjosec abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT singhpawan abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT julianaphilomin abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT salinasruizjosafhat abayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT montesinoslopezosvala bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT montesinoslopezabelardo bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT crossajose bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT toledofernandoh bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT montesinoslopezjosec bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT singhpawan bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT julianaphilomin bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction
AT salinasruizjosafhat bayesianpoissonlognormalmodelforcountdataformultipletraitmultipleenvironmentgenomicenabledprediction