Cargando…
Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning
High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but...
Autores principales: | Pärnamaa, Tanel, Parts, Leopold |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427497/ https://www.ncbi.nlm.nih.gov/pubmed/28391243 http://dx.doi.org/10.1534/g3.116.033654 |
Ejemplares similares
-
Deep learning for computational biology
por: Angermueller, Christof, et al.
Publicado: (2016) -
gitter: A Robust and Accurate Method for Quantification of Colony Sizes From Plate Images
por: Wagih, Omar, et al.
Publicado: (2014) -
Computational biology: deep learning
por: Jones, William, et al.
Publicado: (2017) -
A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein
por: Bryan, Anthony C., et al.
Publicado: (2018) -
Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images
por: Ali, Mohammed A. S., et al.
Publicado: (2021)