Cargando…

Gas-like adhesion of two-dimensional materials onto solid surfaces

The adhesion of two-dimensional (2D) materials onto other surfaces is usually considered a solid-solid mechanical contact. Here, we conduct both atomistic simulations and theoretical modeling to show that there in fact exists an energy conversion between heat and mechanical work in the attachment/de...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Zhengrong, Chang, Tienchong, Guo, Xingming, Gao, Huajian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427824/
https://www.ncbi.nlm.nih.gov/pubmed/28279014
http://dx.doi.org/10.1038/s41598-017-00184-x
Descripción
Sumario:The adhesion of two-dimensional (2D) materials onto other surfaces is usually considered a solid-solid mechanical contact. Here, we conduct both atomistic simulations and theoretical modeling to show that there in fact exists an energy conversion between heat and mechanical work in the attachment/detachment of two-dimensional materials on/off solid surfaces, indicating two-dimensional materials adhesion is a gas-like adsorption rather than a pure solid-solid mechanical adhesion. We reveal that the underlying mechanism of this intriguing gas-like adhesion is the configurational entropy difference between the freestanding and adhered states of the two-dimensional materials. Both the theoretical modeling and atomistic simulations predict that the adhesion induced entropy difference increases with increasing adhesion energy and decreasing equilibrium binding distance. Our findings provide a fundamental understanding of the adhesion of two-dimensional materials, which is important for designing two-dimensional materials based devices and may have general implications for nanoscale efficient actuators.