Cargando…
Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways
Myogenic precursors are myoblasts that have a potency to differentiate into muscle fibers on injury and maintain the regenerative power of skeletal muscle. However, the roles of exogenous nitric oxide (NO) in muscle development and myoblast differentiation are largely unknown. Therefore, in this stu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427886/ https://www.ncbi.nlm.nih.gov/pubmed/28373641 http://dx.doi.org/10.1038/s41598-017-00154-3 |
_version_ | 1783235713273167872 |
---|---|
author | Kumar, Naresh Shaw, Priyanka Uhm, Han Sup Choi, Eun Ha Attri, Pankaj |
author_facet | Kumar, Naresh Shaw, Priyanka Uhm, Han Sup Choi, Eun Ha Attri, Pankaj |
author_sort | Kumar, Naresh |
collection | PubMed |
description | Myogenic precursors are myoblasts that have a potency to differentiate into muscle fibers on injury and maintain the regenerative power of skeletal muscle. However, the roles of exogenous nitric oxide (NO) in muscle development and myoblast differentiation are largely unknown. Therefore, in this study, we examined the effects of exogenous NO generated by a microwave plasma torch on rat myoblastic L6 cell proliferation and differentiation. We observed that the differentiation of L6 myogenic precursor cells into myotubes was significantly enhanced after NO treatment. The expression of the myogenesis marker proteins and mRNA level, such as myoD, myogenin, and myosin heavy chain (MHC), as well as the cyclic guanosine monophosphate (cGMP) level, were significantly increased after the NO treatment, without creating toxicity. Moreover, we observed that the oxidative stress signaling [extracellular-signal-regulated kinase (Erks), and Adenosine monophosphate-activated protein kinase (AMPK)] phosphorylation was higher in NO treated cells than in the control cells [without NO treatment]. Therefore, these results reveal the exogenous NO role in regulating myoblast differentiation through the oxidative stress signaling pathway. Through this work, we can suggest that exogenous NO can help in cell differentiation and tissue regeneration, which provides new possibilities for plasma medicine. |
format | Online Article Text |
id | pubmed-5427886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-54278862017-05-12 Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways Kumar, Naresh Shaw, Priyanka Uhm, Han Sup Choi, Eun Ha Attri, Pankaj Sci Rep Article Myogenic precursors are myoblasts that have a potency to differentiate into muscle fibers on injury and maintain the regenerative power of skeletal muscle. However, the roles of exogenous nitric oxide (NO) in muscle development and myoblast differentiation are largely unknown. Therefore, in this study, we examined the effects of exogenous NO generated by a microwave plasma torch on rat myoblastic L6 cell proliferation and differentiation. We observed that the differentiation of L6 myogenic precursor cells into myotubes was significantly enhanced after NO treatment. The expression of the myogenesis marker proteins and mRNA level, such as myoD, myogenin, and myosin heavy chain (MHC), as well as the cyclic guanosine monophosphate (cGMP) level, were significantly increased after the NO treatment, without creating toxicity. Moreover, we observed that the oxidative stress signaling [extracellular-signal-regulated kinase (Erks), and Adenosine monophosphate-activated protein kinase (AMPK)] phosphorylation was higher in NO treated cells than in the control cells [without NO treatment]. Therefore, these results reveal the exogenous NO role in regulating myoblast differentiation through the oxidative stress signaling pathway. Through this work, we can suggest that exogenous NO can help in cell differentiation and tissue regeneration, which provides new possibilities for plasma medicine. Nature Publishing Group UK 2017-04-03 /pmc/articles/PMC5427886/ /pubmed/28373641 http://dx.doi.org/10.1038/s41598-017-00154-3 Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Kumar, Naresh Shaw, Priyanka Uhm, Han Sup Choi, Eun Ha Attri, Pankaj Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways |
title | Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways |
title_full | Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways |
title_fullStr | Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways |
title_full_unstemmed | Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways |
title_short | Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways |
title_sort | influence of nitric oxide generated through microwave plasma on l6 skeletal muscle cell myogenesis via oxidative signaling pathways |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427886/ https://www.ncbi.nlm.nih.gov/pubmed/28373641 http://dx.doi.org/10.1038/s41598-017-00154-3 |
work_keys_str_mv | AT kumarnaresh influenceofnitricoxidegeneratedthroughmicrowaveplasmaonl6skeletalmusclecellmyogenesisviaoxidativesignalingpathways AT shawpriyanka influenceofnitricoxidegeneratedthroughmicrowaveplasmaonl6skeletalmusclecellmyogenesisviaoxidativesignalingpathways AT uhmhansup influenceofnitricoxidegeneratedthroughmicrowaveplasmaonl6skeletalmusclecellmyogenesisviaoxidativesignalingpathways AT choieunha influenceofnitricoxidegeneratedthroughmicrowaveplasmaonl6skeletalmusclecellmyogenesisviaoxidativesignalingpathways AT attripankaj influenceofnitricoxidegeneratedthroughmicrowaveplasmaonl6skeletalmusclecellmyogenesisviaoxidativesignalingpathways |