Cargando…

A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)

c-Myc dysregulation is hypothesized to account for the ‘stemness’ – self-renewal and pluripotency – shared between embryonic stem cells (ESCs) and adult aggressive tumours. High-risk neuroblastoma (HR-NB) is the most frequent, aggressive, extracranial solid tumour in childhood. Using HR-NB as a plat...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xinan (Holly), Tang, Fangming, Shin, Jisu, Cunningham, John M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427913/
https://www.ncbi.nlm.nih.gov/pubmed/28246384
http://dx.doi.org/10.1038/s41598-017-00122-x
_version_ 1783235720573353984
author Yang, Xinan (Holly)
Tang, Fangming
Shin, Jisu
Cunningham, John M.
author_facet Yang, Xinan (Holly)
Tang, Fangming
Shin, Jisu
Cunningham, John M.
author_sort Yang, Xinan (Holly)
collection PubMed
description c-Myc dysregulation is hypothesized to account for the ‘stemness’ – self-renewal and pluripotency – shared between embryonic stem cells (ESCs) and adult aggressive tumours. High-risk neuroblastoma (HR-NB) is the most frequent, aggressive, extracranial solid tumour in childhood. Using HR-NB as a platform, we performed a network analysis of transcriptome data and presented a c-Myc subnetwork enriched for genes previously reported as ESC-like cancer signatures. A subsequent drug-gene interaction analysis identified a pharmacogenomic agent that preferentially interacted with this HR-NB-specific, ESC-like signature. This agent, Roniciclib (BAY 1000394), inhibited neuroblastoma cell growth and induced apoptosis in vitro. It also repressed the expression of the oncogene c-Myc and the neural ESC marker CDK2 in vitro, which was accompanied by altered expression of the c-Myc-targeted cell cycle regulators CCND1, CDKN1A and CDKN2D in a time-dependent manner. Further investigation into this HR-NB-specific ESC-like signature in 295 and 243 independent patients revealed and validated the general prognostic index of CDK2 and CDKN3 compared with CDKN2D and CDKN1B. These findings highlight the very potent therapeutic benefits of Roniciclib in HR-NB through the targeting of c-Myc-regulated, ESC-like tumorigenesis. This work provides a hypothesis-driven systems computational model that facilitates the translation of genomic and transcriptomic signatures to molecular mechanisms underlying high-risk tumours.
format Online
Article
Text
id pubmed-5427913
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54279132017-05-12 A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature) Yang, Xinan (Holly) Tang, Fangming Shin, Jisu Cunningham, John M. Sci Rep Article c-Myc dysregulation is hypothesized to account for the ‘stemness’ – self-renewal and pluripotency – shared between embryonic stem cells (ESCs) and adult aggressive tumours. High-risk neuroblastoma (HR-NB) is the most frequent, aggressive, extracranial solid tumour in childhood. Using HR-NB as a platform, we performed a network analysis of transcriptome data and presented a c-Myc subnetwork enriched for genes previously reported as ESC-like cancer signatures. A subsequent drug-gene interaction analysis identified a pharmacogenomic agent that preferentially interacted with this HR-NB-specific, ESC-like signature. This agent, Roniciclib (BAY 1000394), inhibited neuroblastoma cell growth and induced apoptosis in vitro. It also repressed the expression of the oncogene c-Myc and the neural ESC marker CDK2 in vitro, which was accompanied by altered expression of the c-Myc-targeted cell cycle regulators CCND1, CDKN1A and CDKN2D in a time-dependent manner. Further investigation into this HR-NB-specific ESC-like signature in 295 and 243 independent patients revealed and validated the general prognostic index of CDK2 and CDKN3 compared with CDKN2D and CDKN1B. These findings highlight the very potent therapeutic benefits of Roniciclib in HR-NB through the targeting of c-Myc-regulated, ESC-like tumorigenesis. This work provides a hypothesis-driven systems computational model that facilitates the translation of genomic and transcriptomic signatures to molecular mechanisms underlying high-risk tumours. Nature Publishing Group UK 2017-03-03 /pmc/articles/PMC5427913/ /pubmed/28246384 http://dx.doi.org/10.1038/s41598-017-00122-x Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Yang, Xinan (Holly)
Tang, Fangming
Shin, Jisu
Cunningham, John M.
A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)
title A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)
title_full A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)
title_fullStr A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)
title_full_unstemmed A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)
title_short A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature)
title_sort c-myc-regulated stem cell-like signature in high-risk neuroblastoma: a systematic discovery (target neuroblastoma esc-like signature)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427913/
https://www.ncbi.nlm.nih.gov/pubmed/28246384
http://dx.doi.org/10.1038/s41598-017-00122-x
work_keys_str_mv AT yangxinanholly acmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT tangfangming acmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT shinjisu acmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT cunninghamjohnm acmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT yangxinanholly cmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT tangfangming cmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT shinjisu cmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature
AT cunninghamjohnm cmycregulatedstemcelllikesignatureinhighriskneuroblastomaasystematicdiscoverytargetneuroblastomaesclikesignature