Cargando…

Grating chips for quantum technologies

We have laser cooled 3 × 10(6 87)Rb atoms to 3 μK in a micro-fabricated grating magneto-optical trap (GMOT), enabling future mass-deployment in highly accurate compact quantum sensors. We magnetically trap the atoms, and use Larmor spin precession for magnetic sensing in the vicinity of the atomic s...

Descripción completa

Detalles Bibliográficos
Autores principales: McGilligan, James P., Griffin, Paul F., Elvin, Rachel, Ingleby, Stuart J., Riis, Erling, Arnold, Aidan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427968/
https://www.ncbi.nlm.nih.gov/pubmed/28341834
http://dx.doi.org/10.1038/s41598-017-00254-0
_version_ 1783235731067502592
author McGilligan, James P.
Griffin, Paul F.
Elvin, Rachel
Ingleby, Stuart J.
Riis, Erling
Arnold, Aidan S.
author_facet McGilligan, James P.
Griffin, Paul F.
Elvin, Rachel
Ingleby, Stuart J.
Riis, Erling
Arnold, Aidan S.
author_sort McGilligan, James P.
collection PubMed
description We have laser cooled 3 × 10(6 87)Rb atoms to 3 μK in a micro-fabricated grating magneto-optical trap (GMOT), enabling future mass-deployment in highly accurate compact quantum sensors. We magnetically trap the atoms, and use Larmor spin precession for magnetic sensing in the vicinity of the atomic sample. Finally, we demonstrate an array of magneto-optical traps with a single laser beam, which will be utilised for future cold atom gradiometry.
format Online
Article
Text
id pubmed-5427968
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54279682017-05-15 Grating chips for quantum technologies McGilligan, James P. Griffin, Paul F. Elvin, Rachel Ingleby, Stuart J. Riis, Erling Arnold, Aidan S. Sci Rep Article We have laser cooled 3 × 10(6 87)Rb atoms to 3 μK in a micro-fabricated grating magneto-optical trap (GMOT), enabling future mass-deployment in highly accurate compact quantum sensors. We magnetically trap the atoms, and use Larmor spin precession for magnetic sensing in the vicinity of the atomic sample. Finally, we demonstrate an array of magneto-optical traps with a single laser beam, which will be utilised for future cold atom gradiometry. Nature Publishing Group UK 2017-03-24 /pmc/articles/PMC5427968/ /pubmed/28341834 http://dx.doi.org/10.1038/s41598-017-00254-0 Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
McGilligan, James P.
Griffin, Paul F.
Elvin, Rachel
Ingleby, Stuart J.
Riis, Erling
Arnold, Aidan S.
Grating chips for quantum technologies
title Grating chips for quantum technologies
title_full Grating chips for quantum technologies
title_fullStr Grating chips for quantum technologies
title_full_unstemmed Grating chips for quantum technologies
title_short Grating chips for quantum technologies
title_sort grating chips for quantum technologies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427968/
https://www.ncbi.nlm.nih.gov/pubmed/28341834
http://dx.doi.org/10.1038/s41598-017-00254-0
work_keys_str_mv AT mcgilliganjamesp gratingchipsforquantumtechnologies
AT griffinpaulf gratingchipsforquantumtechnologies
AT elvinrachel gratingchipsforquantumtechnologies
AT inglebystuartj gratingchipsforquantumtechnologies
AT riiserling gratingchipsforquantumtechnologies
AT arnoldaidans gratingchipsforquantumtechnologies