Cargando…

High Performance Solution Processed Organic Field Effect Transistors with Novel Diketopyrrolopyrrole-Containing Small Molecules

The donor-acceptor (D-A)-type diketopyrrolopyrrole (DPP)-based small molecules (LGC-D117 and LGC-D118) were synthesized and used as the active layer of solution-processable organic field-effect transistors (OFETs). Both LGC-D117 and LGC-D118 contain silaindacenodithiophene as electron-donor units wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Bogyu, Sun, Huabin, Lee, Jaechol, Noh, Yong-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427974/
https://www.ncbi.nlm.nih.gov/pubmed/28279016
http://dx.doi.org/10.1038/s41598-017-00277-7
Descripción
Sumario:The donor-acceptor (D-A)-type diketopyrrolopyrrole (DPP)-based small molecules (LGC-D117 and LGC-D118) were synthesized and used as the active layer of solution-processable organic field-effect transistors (OFETs). Both LGC-D117 and LGC-D118 contain silaindacenodithiophene as electron-donor units with DPP as an electron-accepting linker, and octylrhodanine as the electron-accepting end group. The molecules were functionalized with different side chains to study their effects on OFET characteristics. LGC-D117 has a simple branched alkyl side chain, whereas LGC-D118 features a bulky siloxane-terminated hybrid alkyl chain. The siloxane side chains of LGC-D118 account for its better crystallinity, leading to significantly high field-effect mobility (max 3.04 cm(2) V(−1) s(−1)). In particular, LGC-D118 is well soluble and sustains the high mobility in the environmentally friendly 2-methyltetrahydrofuran solvent with low temperature annealing at 100 °C due to the bulky siloxane-terminated alkyl side chain.