Cargando…
A Biologically-validated HCV E1E2 Heterodimer Structural Model
The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resoluti...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428263/ https://www.ncbi.nlm.nih.gov/pubmed/28303031 http://dx.doi.org/10.1038/s41598-017-00320-7 |
_version_ | 1783235778280685568 |
---|---|
author | Castelli, Matteo Clementi, Nicola Pfaff, Jennifer Sautto, Giuseppe A. Diotti, Roberta A. Burioni, Roberto Doranz, Benjamin J. Dal Peraro, Matteo Clementi, Massimo Mancini, Nicasio |
author_facet | Castelli, Matteo Clementi, Nicola Pfaff, Jennifer Sautto, Giuseppe A. Diotti, Roberta A. Burioni, Roberto Doranz, Benjamin J. Dal Peraro, Matteo Clementi, Massimo Mancini, Nicasio |
author_sort | Castelli, Matteo |
collection | PubMed |
description | The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry. |
format | Online Article Text |
id | pubmed-5428263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-54282632017-05-15 A Biologically-validated HCV E1E2 Heterodimer Structural Model Castelli, Matteo Clementi, Nicola Pfaff, Jennifer Sautto, Giuseppe A. Diotti, Roberta A. Burioni, Roberto Doranz, Benjamin J. Dal Peraro, Matteo Clementi, Massimo Mancini, Nicasio Sci Rep Article The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry. Nature Publishing Group UK 2017-03-16 /pmc/articles/PMC5428263/ /pubmed/28303031 http://dx.doi.org/10.1038/s41598-017-00320-7 Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Castelli, Matteo Clementi, Nicola Pfaff, Jennifer Sautto, Giuseppe A. Diotti, Roberta A. Burioni, Roberto Doranz, Benjamin J. Dal Peraro, Matteo Clementi, Massimo Mancini, Nicasio A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title | A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_full | A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_fullStr | A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_full_unstemmed | A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_short | A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_sort | biologically-validated hcv e1e2 heterodimer structural model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428263/ https://www.ncbi.nlm.nih.gov/pubmed/28303031 http://dx.doi.org/10.1038/s41598-017-00320-7 |
work_keys_str_mv | AT castellimatteo abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT clementinicola abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT pfaffjennifer abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT sauttogiuseppea abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT diottirobertaa abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT burioniroberto abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT doranzbenjaminj abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT dalperaromatteo abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT clementimassimo abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT mancininicasio abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT castellimatteo biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT clementinicola biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT pfaffjennifer biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT sauttogiuseppea biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT diottirobertaa biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT burioniroberto biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT doranzbenjaminj biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT dalperaromatteo biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT clementimassimo biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT mancininicasio biologicallyvalidatedhcve1e2heterodimerstructuralmodel |