Cargando…

A Biologically-validated HCV E1E2 Heterodimer Structural Model

The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resoluti...

Descripción completa

Detalles Bibliográficos
Autores principales: Castelli, Matteo, Clementi, Nicola, Pfaff, Jennifer, Sautto, Giuseppe A., Diotti, Roberta A., Burioni, Roberto, Doranz, Benjamin J., Dal Peraro, Matteo, Clementi, Massimo, Mancini, Nicasio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428263/
https://www.ncbi.nlm.nih.gov/pubmed/28303031
http://dx.doi.org/10.1038/s41598-017-00320-7
_version_ 1783235778280685568
author Castelli, Matteo
Clementi, Nicola
Pfaff, Jennifer
Sautto, Giuseppe A.
Diotti, Roberta A.
Burioni, Roberto
Doranz, Benjamin J.
Dal Peraro, Matteo
Clementi, Massimo
Mancini, Nicasio
author_facet Castelli, Matteo
Clementi, Nicola
Pfaff, Jennifer
Sautto, Giuseppe A.
Diotti, Roberta A.
Burioni, Roberto
Doranz, Benjamin J.
Dal Peraro, Matteo
Clementi, Massimo
Mancini, Nicasio
author_sort Castelli, Matteo
collection PubMed
description The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
format Online
Article
Text
id pubmed-5428263
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54282632017-05-15 A Biologically-validated HCV E1E2 Heterodimer Structural Model Castelli, Matteo Clementi, Nicola Pfaff, Jennifer Sautto, Giuseppe A. Diotti, Roberta A. Burioni, Roberto Doranz, Benjamin J. Dal Peraro, Matteo Clementi, Massimo Mancini, Nicasio Sci Rep Article The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry. Nature Publishing Group UK 2017-03-16 /pmc/articles/PMC5428263/ /pubmed/28303031 http://dx.doi.org/10.1038/s41598-017-00320-7 Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Castelli, Matteo
Clementi, Nicola
Pfaff, Jennifer
Sautto, Giuseppe A.
Diotti, Roberta A.
Burioni, Roberto
Doranz, Benjamin J.
Dal Peraro, Matteo
Clementi, Massimo
Mancini, Nicasio
A Biologically-validated HCV E1E2 Heterodimer Structural Model
title A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_full A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_fullStr A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_full_unstemmed A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_short A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_sort biologically-validated hcv e1e2 heterodimer structural model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428263/
https://www.ncbi.nlm.nih.gov/pubmed/28303031
http://dx.doi.org/10.1038/s41598-017-00320-7
work_keys_str_mv AT castellimatteo abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT clementinicola abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT pfaffjennifer abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT sauttogiuseppea abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT diottirobertaa abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT burioniroberto abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT doranzbenjaminj abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT dalperaromatteo abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT clementimassimo abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT mancininicasio abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT castellimatteo biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT clementinicola biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT pfaffjennifer biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT sauttogiuseppea biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT diottirobertaa biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT burioniroberto biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT doranzbenjaminj biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT dalperaromatteo biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT clementimassimo biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT mancininicasio biologicallyvalidatedhcve1e2heterodimerstructuralmodel