Cargando…
Blue organic light-emitting diodes realizing external quantum efficiency over 25% using thermally activated delayed fluorescence emitters
Improving the performance of blue organic light-emitting diodes (OLEDs) is needed for full-colour flat-panel displays and solid-state lighting sources. The use of thermally activated delayed fluorescence (TADF) is a promising approach to efficient blue electroluminescence. However, the difficulty of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428273/ https://www.ncbi.nlm.nih.gov/pubmed/28325941 http://dx.doi.org/10.1038/s41598-017-00368-5 |
Sumario: | Improving the performance of blue organic light-emitting diodes (OLEDs) is needed for full-colour flat-panel displays and solid-state lighting sources. The use of thermally activated delayed fluorescence (TADF) is a promising approach to efficient blue electroluminescence. However, the difficulty of developing efficient blue TADF emitters lies in finding a molecular structure that simultaneously incorporates (i) a small energy difference between the lowest excited singlet state (S(1)) and the lowest triplet state (T(1)), ΔE (ST), (ii) a large oscillator strength, f, between S(1) and the ground state (S(0)), and (iii) S(1) energy sufficiently high for blue emission. In this study, we develop TADF emitters named CCX-I and CCX-II satisfying the above requirements. They show blue photoluminescence and high triplet-to-singlet up-conversion yield. In addition, their transition dipole moments are horizontally oriented, resulting in further increase of their electroluminescence efficiency. Using CCX-II as an emitting dopant, we achieve a blue OLED showing a high external quantum efficiency of 25.9%, which is one of the highest EQEs in blue OLEDs reported previously. |
---|