Cargando…

Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks

For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n (1), … n (r) particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymp...

Descripción completa

Detalles Bibliográficos
Autor principal: Shchesnovich, Valery S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428393/
https://www.ncbi.nlm.nih.gov/pubmed/28194000
http://dx.doi.org/10.1038/s41598-017-00044-8
Descripción
Sumario:For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n (1), … n (r) particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic law for distinguishable particles, governed by a multinomial distribution, modified by the quantum statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed multiport with the averaging performed over all possible configurations of the particles in the input ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular binning K/M → 1, where K output ports belong to a single bin.