Cargando…
A novel inversion in the chloroplast genome of marama (Tylosema esculentum)
Tylosema esculentum (marama bean) is being developed as a possible crop for resource-poor farmers in arid regions of Southern Africa. As part of the molecular characterization of this species, the chloroplast genome has been assembled from next-generation sequencing using both Illumina and Pac-Bio d...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429017/ https://www.ncbi.nlm.nih.gov/pubmed/28158587 http://dx.doi.org/10.1093/jxb/erw500 |
Sumario: | Tylosema esculentum (marama bean) is being developed as a possible crop for resource-poor farmers in arid regions of Southern Africa. As part of the molecular characterization of this species, the chloroplast genome has been assembled from next-generation sequencing using both Illumina and Pac-Bio data. The genome is of typical organization with a large single-copy region and a small single-copy region separated by a pair of inverted repeats and covers 161537 bp. It contains a unique inversion not present in any other legumes, even in the closest relatives for which the complete chloroplast genome is available, and two complete copies of the ycf1 gene. These data extend the range of variability of legume chloroplast genomes. The sequencing of multiple individuals has identified two different chloroplast genomes which were geographically separated. The current sampling is limited so that the extent of the intraspecific variation is still to be determined, leaving open the question of legume chloroplast genomes adapted to particular arid environments. |
---|