Cargando…
Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba)
Climate change can threaten the reproductive success of plants, both directly, through physiological damage during increasingly extreme weather events, and indirectly, through disruption of plant–pollinator interactions. To explore how plant–pollinator interactions are modified by extreme weather, w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429019/ https://www.ncbi.nlm.nih.gov/pubmed/27927999 http://dx.doi.org/10.1093/jxb/erw430 |
_version_ | 1783235951261122560 |
---|---|
author | Bishop, Jacob Jones, Hannah E. O’Sullivan, Donal M. Potts, Simon G. |
author_facet | Bishop, Jacob Jones, Hannah E. O’Sullivan, Donal M. Potts, Simon G. |
author_sort | Bishop, Jacob |
collection | PubMed |
description | Climate change can threaten the reproductive success of plants, both directly, through physiological damage during increasingly extreme weather events, and indirectly, through disruption of plant–pollinator interactions. To explore how plant–pollinator interactions are modified by extreme weather, we exposed faba bean (Vicia faba) plants to elevated temperature for 5 d during flowering, simulating a heatwave. We then moved the plants to flight cages with either bumblebees or no pollinators, or to two field sites, where plants were enclosed in mesh bags or pollinated by wild insect communities. We used a morphological marker to quantify pollen movement between experimental plants. There was a substantial increase in the level of outcrossing by insect pollinators following heat stress. Proportion outcrossed seed increased from 17 % at control temperature, to 33 % following heat stress in the flight cages, and from 31 % to 80 % at one field site, but not at the other (33 % to 32 %). Abiotic stress can dramatically shift the relative contributions of cross- and self-pollination to reproduction in an insect pollinated plant. The resulting increases in gene flow have broad implications for genetic diversity and functioning of ecosystems, and may increase resilience by accelerating the selection of more stress-tolerant genotypes. |
format | Online Article Text |
id | pubmed-5429019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-54290192017-05-17 Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) Bishop, Jacob Jones, Hannah E. O’Sullivan, Donal M. Potts, Simon G. J Exp Bot Research Paper Climate change can threaten the reproductive success of plants, both directly, through physiological damage during increasingly extreme weather events, and indirectly, through disruption of plant–pollinator interactions. To explore how plant–pollinator interactions are modified by extreme weather, we exposed faba bean (Vicia faba) plants to elevated temperature for 5 d during flowering, simulating a heatwave. We then moved the plants to flight cages with either bumblebees or no pollinators, or to two field sites, where plants were enclosed in mesh bags or pollinated by wild insect communities. We used a morphological marker to quantify pollen movement between experimental plants. There was a substantial increase in the level of outcrossing by insect pollinators following heat stress. Proportion outcrossed seed increased from 17 % at control temperature, to 33 % following heat stress in the flight cages, and from 31 % to 80 % at one field site, but not at the other (33 % to 32 %). Abiotic stress can dramatically shift the relative contributions of cross- and self-pollination to reproduction in an insect pollinated plant. The resulting increases in gene flow have broad implications for genetic diversity and functioning of ecosystems, and may increase resilience by accelerating the selection of more stress-tolerant genotypes. Oxford University Press 2017-04-01 2016-12-07 /pmc/articles/PMC5429019/ /pubmed/27927999 http://dx.doi.org/10.1093/jxb/erw430 Text en © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Bishop, Jacob Jones, Hannah E. O’Sullivan, Donal M. Potts, Simon G. Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) |
title | Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) |
title_full | Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) |
title_fullStr | Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) |
title_full_unstemmed | Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) |
title_short | Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba) |
title_sort | elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (vicia faba) |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429019/ https://www.ncbi.nlm.nih.gov/pubmed/27927999 http://dx.doi.org/10.1093/jxb/erw430 |
work_keys_str_mv | AT bishopjacob elevatedtemperaturedrivesashiftfromselfingtooutcrossingintheinsectpollinatedlegumefababeanviciafaba AT joneshannahe elevatedtemperaturedrivesashiftfromselfingtooutcrossingintheinsectpollinatedlegumefababeanviciafaba AT osullivandonalm elevatedtemperaturedrivesashiftfromselfingtooutcrossingintheinsectpollinatedlegumefababeanviciafaba AT pottssimong elevatedtemperaturedrivesashiftfromselfingtooutcrossingintheinsectpollinatedlegumefababeanviciafaba |