Cargando…

Electroplating lithium transition metal oxides

Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO(2), LiMn(2)O(4), and Al-doped LiCoO(2). The crystallini...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Huigang, Ning, Hailong, Busbee, John, Shen, Zihan, Kiggins, Chadd, Hua, Yuyan, Eaves, Janna, Davis, Jerome, Shi, Tan, Shao, Yu-Tsun, Zuo, Jian-Min, Hong, Xuhao, Chan, Yanbin, Wang, Shuangbao, Wang, Peng, Sun, Pengcheng, Xu, Sheng, Liu, Jinyun, Braun, Paul V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429031/
https://www.ncbi.nlm.nih.gov/pubmed/28508061
http://dx.doi.org/10.1126/sciadv.1602427
Descripción
Sumario:Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO(2), LiMn(2)O(4), and Al-doped LiCoO(2). The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility.