Cargando…
Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions
The development of in vitro models for the maintenance and differentiation of pluripotent stem cells (PSCs) is an active area of stem cell research. The strategies used so far are based mainly on two-dimensional (2D) cultures, in which cellular phenotypes are regulated by soluble factors. We show th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429032/ https://www.ncbi.nlm.nih.gov/pubmed/28508073 http://dx.doi.org/10.1126/sciadv.1602875 |
_version_ | 1783235953026924544 |
---|---|
author | Zujur, Denise Kanke, Kosuke Lichtler, Alexander C. Hojo, Hironori Chung, Ung-il Ohba, Shinsuke |
author_facet | Zujur, Denise Kanke, Kosuke Lichtler, Alexander C. Hojo, Hironori Chung, Ung-il Ohba, Shinsuke |
author_sort | Zujur, Denise |
collection | PubMed |
description | The development of in vitro models for the maintenance and differentiation of pluripotent stem cells (PSCs) is an active area of stem cell research. The strategies used so far are based mainly on two-dimensional (2D) cultures, in which cellular phenotypes are regulated by soluble factors. We show that a 3D culture system with atelocollagen porous scaffolds can significantly improve the outcome of the current platforms intended for the maintenance and lineage specification of mouse PSCs (mPSCs). Unlike 2D conditions, the 3D conditions maintained the undifferentiated state of mouse embryonic stem cells (mESCs) without exogenous stimulation and also supported endoderm, mesoderm, and ectoderm differentiation of mESCs under serum-free conditions. Moreover, 3D mPSC–derived mesodermal cells showed accelerated osteogenic differentiation, giving rise to functional osteoblast-osteocyte populations within calcified structures. The present strategy offers a 3D platform suitable for the formation of organoids that mimic in vivo organs containing various cell types, and it may be adaptable to the generation of ectoderm-, mesoderm-, and endoderm-derived tissues when combined with appropriate differentiation treatments. |
format | Online Article Text |
id | pubmed-5429032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54290322017-05-15 Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions Zujur, Denise Kanke, Kosuke Lichtler, Alexander C. Hojo, Hironori Chung, Ung-il Ohba, Shinsuke Sci Adv Research Articles The development of in vitro models for the maintenance and differentiation of pluripotent stem cells (PSCs) is an active area of stem cell research. The strategies used so far are based mainly on two-dimensional (2D) cultures, in which cellular phenotypes are regulated by soluble factors. We show that a 3D culture system with atelocollagen porous scaffolds can significantly improve the outcome of the current platforms intended for the maintenance and lineage specification of mouse PSCs (mPSCs). Unlike 2D conditions, the 3D conditions maintained the undifferentiated state of mouse embryonic stem cells (mESCs) without exogenous stimulation and also supported endoderm, mesoderm, and ectoderm differentiation of mESCs under serum-free conditions. Moreover, 3D mPSC–derived mesodermal cells showed accelerated osteogenic differentiation, giving rise to functional osteoblast-osteocyte populations within calcified structures. The present strategy offers a 3D platform suitable for the formation of organoids that mimic in vivo organs containing various cell types, and it may be adaptable to the generation of ectoderm-, mesoderm-, and endoderm-derived tissues when combined with appropriate differentiation treatments. American Association for the Advancement of Science 2017-05-12 /pmc/articles/PMC5429032/ /pubmed/28508073 http://dx.doi.org/10.1126/sciadv.1602875 Text en Copyright © 2017, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zujur, Denise Kanke, Kosuke Lichtler, Alexander C. Hojo, Hironori Chung, Ung-il Ohba, Shinsuke Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
title | Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
title_full | Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
title_fullStr | Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
title_full_unstemmed | Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
title_short | Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
title_sort | three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429032/ https://www.ncbi.nlm.nih.gov/pubmed/28508073 http://dx.doi.org/10.1126/sciadv.1602875 |
work_keys_str_mv | AT zujurdenise threedimensionalsystemenablingthemaintenanceanddirecteddifferentiationofpluripotentstemcellsunderdefinedconditions AT kankekosuke threedimensionalsystemenablingthemaintenanceanddirecteddifferentiationofpluripotentstemcellsunderdefinedconditions AT lichtleralexanderc threedimensionalsystemenablingthemaintenanceanddirecteddifferentiationofpluripotentstemcellsunderdefinedconditions AT hojohironori threedimensionalsystemenablingthemaintenanceanddirecteddifferentiationofpluripotentstemcellsunderdefinedconditions AT chungungil threedimensionalsystemenablingthemaintenanceanddirecteddifferentiationofpluripotentstemcellsunderdefinedconditions AT ohbashinsuke threedimensionalsystemenablingthemaintenanceanddirecteddifferentiationofpluripotentstemcellsunderdefinedconditions |