Cargando…

Bioflocculation potentials of a uronic acid-containing glycoprotein produced by Bacillus sp. AEMREG4 isolated from Tyhume River, South Africa

Bioflocculants are secondary metabolites produced by microorganisms during their growth which have received attentions due to their biodegradability, innocuousness and lack of secondary pollution from degradation intermediates. This study reports on a bioflocculant produced by Bacillus specie isolat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ntsangani, Nozipho, Okaiyeto, Kunle, Uchechukwu, Nwodo U., Olaniran, Ademola O., Mabinya, Leonard V., Okoh, Anthony I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429313/
https://www.ncbi.nlm.nih.gov/pubmed/28500400
http://dx.doi.org/10.1007/s13205-017-0695-8
Descripción
Sumario:Bioflocculants are secondary metabolites produced by microorganisms during their growth which have received attentions due to their biodegradability, innocuousness and lack of secondary pollution from degradation intermediates. This study reports on a bioflocculant produced by Bacillus specie isolated from Thyume River in South Africa. The bacterial isolate was identified through 16S rDNA sequencing and the BLAST analysis of the nucleotide sequences revealed 99% similarity to Bacillus sp. BCT-7112. The sequence was subsequently deposited in the GenBank as Bacillus sp. AEMREG4 with accession number KP406729. The optimum culture conditions for bioflocculant production were an inoculum size 4% (v/v) (80%) and starch (81%) as well as yeast extract (82%) as sole carbon and nitrogen sources, respectively. Addition of Ca(2+) greatly enhanced the flocculating activity (76%) of crude bioflocculant over a wide range of pH 4–10 and retained high flocculating activity when heated at 100 °C for 1 h. Chemical analyses of the purified bioflocculant revealed carbohydrate (79% w/w) as a predominant component followed by uronic acid (15% w/w) and protein (5% w/w). Fourier transform infrared spectrum revealed the presence of carboxyl, hydroxyl and methoxyl groups as the functional groups responsible for flocculation and the high flocculation activity achieved portends its industrial applicability.