Cargando…

Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin

The ubiquitous occurrence of polycyclic aromatic hydrocarbons (PAHs) leads to constant human exposure at low levels. Toxicologically relevant are especially the high-molecular weight substances due to their (pro-)carcinogenic potential. Following ingestion or uptake, the eukaryotic phase I metabolis...

Descripción completa

Detalles Bibliográficos
Autores principales: Sowada, Juliane, Lemoine, Lisa, Schön, Karsten, Hutzler, Christoph, Luch, Andreas, Tralau, Tewes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429354/
https://www.ncbi.nlm.nih.gov/pubmed/28378121
http://dx.doi.org/10.1007/s00204-017-1964-3
Descripción
Sumario:The ubiquitous occurrence of polycyclic aromatic hydrocarbons (PAHs) leads to constant human exposure at low levels. Toxicologically relevant are especially the high-molecular weight substances due to their (pro-)carcinogenic potential. Following ingestion or uptake, the eukaryotic phase I metabolism often activates these substances to become potent DNA binders, and unsurprisingly metabolism and DNA-adduct formation of model substances such as benzo[a]pyrene (B[a]P) are well studied. However, apart from being subjected to eukaryotic transformations PAHs are also carbon and energy sources for the myriads of commensal microbes inhabiting man’s every surface. Yet, we know little about the microbiome’s PAH-metabolism capacity and its potentially adverse impact on the human host. This study now shows that readily isolable skin commensals transform B[a]P into a range of highly cyto- and genotoxic metabolites that are excreted in toxicologically relevant concentrations during growth. The respective bacterial supernatants contain a mixture of established eukaryotic as well as hitherto unknown prokaryotic metabolites, the combination of which leads to an increased toxicity. Altogether we show that PAH metabolism of the microbiome has to be considered a potential hazard. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00204-017-1964-3) contains supplementary material, which is available to authorised users.