Cargando…
Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway
Accumulation of mitochondrial reactive oxygen species (mROS) has been implicated in the pathogenesis of fluorosis. As the main mitochondrial deacetylase, SIRT3 is closely associated with oxidative stress. To investigate the role of SIRT3 in response to sodium fluoride (NaF)-induced nephrotoxicity. O...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429606/ https://www.ncbi.nlm.nih.gov/pubmed/28386112 http://dx.doi.org/10.1038/s41598-017-00796-3 |
_version_ | 1783236056911446016 |
---|---|
author | Song, Chao Fu, Beibei Zhang, Jingcheng Zhao, Jiamin Yuan, Mengke Peng, Wei Zhang, Yong Wu, Haibo |
author_facet | Song, Chao Fu, Beibei Zhang, Jingcheng Zhao, Jiamin Yuan, Mengke Peng, Wei Zhang, Yong Wu, Haibo |
author_sort | Song, Chao |
collection | PubMed |
description | Accumulation of mitochondrial reactive oxygen species (mROS) has been implicated in the pathogenesis of fluorosis. As the main mitochondrial deacetylase, SIRT3 is closely associated with oxidative stress. To investigate the role of SIRT3 in response to sodium fluoride (NaF)-induced nephrotoxicity. Our results showed that NaF treatment impaired mitochondrial ultrastructure, decreased cell viability and increased apoptosis in TCMK-1 cells. Oxidative stress, detected by mROS and 8-Hydroxy-2’-deoxyguanosine (8-OHdG) were higher in NaF-treated cells, accompanied by decreased level of reduced glutathione (GSH). NaF reduces manganese superoxide dismutase (SOD2) expression through SIRT3-mediated DNA-binding activity of FoxO3a and decrease SOD2 activity by inhibiting SIRT3-mediated deacetylation. These effects were ameliorated by overexpression of SIRT3. Peroxisome proliferator-activated receptor-coactivator 1a (PGC-1α) interacted with nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) that bound to SIRT3 promoter to regulate SIRT3 expression. The study provides new insights into a critical NRF2/PGC-1α-SIRT3 pathway in response to NaF-induced nephritic oxidative injury. In vivo treatment of SIRT3-expressing adenovirus protects against NaF-induced nephritic injury in mice. Moreover, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by NaF. In conclusion, these data shedding light on new approaches for treatment of NaF-induced nephrotoxicity. |
format | Online Article Text |
id | pubmed-5429606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-54296062017-05-15 Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway Song, Chao Fu, Beibei Zhang, Jingcheng Zhao, Jiamin Yuan, Mengke Peng, Wei Zhang, Yong Wu, Haibo Sci Rep Article Accumulation of mitochondrial reactive oxygen species (mROS) has been implicated in the pathogenesis of fluorosis. As the main mitochondrial deacetylase, SIRT3 is closely associated with oxidative stress. To investigate the role of SIRT3 in response to sodium fluoride (NaF)-induced nephrotoxicity. Our results showed that NaF treatment impaired mitochondrial ultrastructure, decreased cell viability and increased apoptosis in TCMK-1 cells. Oxidative stress, detected by mROS and 8-Hydroxy-2’-deoxyguanosine (8-OHdG) were higher in NaF-treated cells, accompanied by decreased level of reduced glutathione (GSH). NaF reduces manganese superoxide dismutase (SOD2) expression through SIRT3-mediated DNA-binding activity of FoxO3a and decrease SOD2 activity by inhibiting SIRT3-mediated deacetylation. These effects were ameliorated by overexpression of SIRT3. Peroxisome proliferator-activated receptor-coactivator 1a (PGC-1α) interacted with nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) that bound to SIRT3 promoter to regulate SIRT3 expression. The study provides new insights into a critical NRF2/PGC-1α-SIRT3 pathway in response to NaF-induced nephritic oxidative injury. In vivo treatment of SIRT3-expressing adenovirus protects against NaF-induced nephritic injury in mice. Moreover, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by NaF. In conclusion, these data shedding light on new approaches for treatment of NaF-induced nephrotoxicity. Nature Publishing Group UK 2017-04-06 /pmc/articles/PMC5429606/ /pubmed/28386112 http://dx.doi.org/10.1038/s41598-017-00796-3 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Song, Chao Fu, Beibei Zhang, Jingcheng Zhao, Jiamin Yuan, Mengke Peng, Wei Zhang, Yong Wu, Haibo Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway |
title | Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway |
title_full | Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway |
title_fullStr | Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway |
title_full_unstemmed | Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway |
title_short | Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway |
title_sort | sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial sirt3 signaling pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429606/ https://www.ncbi.nlm.nih.gov/pubmed/28386112 http://dx.doi.org/10.1038/s41598-017-00796-3 |
work_keys_str_mv | AT songchao sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT fubeibei sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT zhangjingcheng sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT zhaojiamin sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT yuanmengke sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT pengwei sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT zhangyong sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway AT wuhaibo sodiumfluorideinducesnephrotoxicityviaoxidativestressregulatedmitochondrialsirt3signalingpathway |