Cargando…
Longitudinal data analysis for rare variants detection with penalized quadratic inference function
Longitudinal genetic data provide more information regarding genetic effects over time compared with cross-sectional data. Coupled with next-generation sequencing technologies, it becomes reality to identify important genes containing both rare and common variants in a longitudinal design. In this w...
Autores principales: | Cao, Hongyan, Li, Zhi, Yang, Haitao, Cui, Yuehua, Zhang, Yanbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429681/ https://www.ncbi.nlm.nih.gov/pubmed/28381821 http://dx.doi.org/10.1038/s41598-017-00712-9 |
Ejemplares similares
-
Penalized Quadratic Inference Function-Based Variable Selection for Generalized Partially Linear Varying Coefficient Models with Longitudinal Data
por: Zhang, Jinghua, et al.
Publicado: (2020) -
An association of platelet indices with blood pressure in Beijing adults: Applying quadratic inference function for a longitudinal study
por: Yang, Kun, et al.
Publicado: (2016) -
Modeling Factors Associated with Dialysis Adequacy Using Longitudinal Data Analysis: Generalized Estimating Equation Versus Quadratic Inference Function
por: Gholian, Khadije, et al.
Publicado: (2023) -
High-dimensional estimation of quadratic variation based on penalized realized variance
por: Christensen, Kim, et al.
Publicado: (2022) -
Comparison of generalized estimating equations and quadratic inference functions using data from the National Longitudinal Survey of Children and Youth (NLSCY) database
por: Odueyungbo, Adefowope, et al.
Publicado: (2008)