Cargando…
Novel metrics to measure coverage in whole exome sequencing datasets reveal local and global non-uniformity
Whole Exome Sequencing (WES) is a powerful clinical diagnostic tool for discovering the genetic basis of many diseases. A major shortcoming of WES is uneven coverage of sequence reads over the exome targets contributing to many low coverage regions, which hinders accurate variant calling. In this st...
Autores principales: | Wang, Qingyu, Shashikant, Cooduvalli S., Jensen, Matthew, Altman, Naomi S., Girirajan, Santhosh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429826/ https://www.ncbi.nlm.nih.gov/pubmed/28408746 http://dx.doi.org/10.1038/s41598-017-01005-x |
Ejemplares similares
-
A machine-learning approach for accurate detection of copy number variants from exome sequencing
por: Pounraja, Vijay Kumar, et al.
Publicado: (2019) -
Error correction of high-throughput sequencing datasets with non-uniform coverage
por: Medvedev, Paul, et al.
Publicado: (2011) -
Measuring Coverage and Accuracy of Whole Exome Sequencing in Clinical Context
por: Kong, Sek Won, et al.
Publicado: (2018) -
Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage
por: Barbitoff, Yury A., et al.
Publicado: (2020) -
Mapping a shared genetic basis for neurodevelopmental disorders
por: Jensen, Matthew, et al.
Publicado: (2017)